【Redis(8)】Spring Boot整合Redis和Guava,解决缓存穿透、缓存击穿、缓存雪崩等缓存问题

缓存技术的挑战及设计方案我们介绍了使用缓存技术可能会遇到的一些问题,那么如何解决这些问题呢?

在构建缓存系统时,Spring Boot和Redis的结合提供了强大的支持,而Guava的LoadingCache则为缓存管理带来了便捷的解决方案。下面我将介绍如何通过整合Spring Boot、Redis和Guava来实现一个解决缓存穿透、缓存击穿、缓存雪崩、缓存污染和缓存数据一致性问题的缓存方案。

一、整合Spring Boot与Redis

首先,我们需要在Spring Boot项目中整合原生Redis客户端。这可以通过添加Spring Boot Redis依赖来实现。

二、引入Guava

Guava的LoadingCache是一个高级缓存工具,它支持自动加载、缓存数据的自动刷新和监听器通知。

三、工具类

下面是一个三高缓存工具类的实现,它整合了Spring Boot、Redis和Guava的LoadingCache。这个工具类旨在解决缓存穿透、缓存击穿、缓存雪崩、缓存污染和缓存数据一致性问题。

import com.google.common.cache.CacheBuilder;
import com.google.common.cache.CacheLoader;
import com.google.common.cache.LoadingCache;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.redis.core.StringRedisTemplate;
import org.springframework.data.redis.core.ValueOperations;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;

public class CacheUtil<DataLoader extends CacheUtil.DataLoaderInterface> {

    private final StringRedisTemplate stringRedisTemplate;
    private final ValueOperations<String, String> valueOperations;
    private final LoadingCache<String, String> loadingCache;
    private final DataLoader dataLoader;

    @Autowired
    public CacheUtil(
        StringRedisTemplate stringRedisTemplate, DataLoader dataLoader) {
        this.stringRedisTemplate = stringRedisTemplate;
        this.valueOperations = stringRedisTemplate.opsForValue();
        this.dataLoader = dataLoader;

        // 初始化Guava LoadingCache
        // 设置最大容量,避免缓存污染
        // 设置写入后过期时间,避免缓存雪崩
        // 使用锁机制,避免缓存击穿
        this.loadingCache = CacheBuilder.newBuilder()
                .maximumSize(10000)
                .expireAfterWrite(10, TimeUnit.MINUTES)
                .build(new CacheLoader<String, String>() {
                    @Override
                    public String load(String key) throws Exception {
                        // 当缓存未命中时,调用数据加载器的方法从数据库加载数据
                        return dataLoader.loadDataFromDatabase(key);
                    }
                });
    }

    public String get(String key) {
        try {
            // 通过Guava LoadingCache获取数据
            // 自动处理缓存穿透和击穿
            return loadingCache.get(key);
        } catch (ExecutionException e) {
            // 异常处理,返回null
            return null;
        }
    }

    public void set(String key, String value) {
        // 同时更新Redis和Guava LoadingCache
        // 保持数据一致性
        valueOperations.set(key, value);
        loadingCache.put(key, value);
    }

    public void update(String key, String value) {
        // 更新缓存数据,解决数据一致性问题
        set(key, value);
    }

    public void insert(String key, String value) {
        // 插入前检查缓存,避免缓存污染
        if (get(key) == null) {
            set(key, value);
        }
    }

    public void delete(String key) {
        // 删除Redis和Guava LoadingCache中的数据
        // 保持数据一致性
        valueOperations.delete(key);
        loadingCache.invalidate(key); // 使缓存项失效
    }

    // 用于在数据库更新后刷新缓存
    public void refreshCache(String key) {
        loadingCache.invalidate(key);
    }

    // 数据加载器接口,调用者需要实现该接口以提供数据加载逻辑
    public interface DataLoaderInterface {
        String loadDataFromDatabase(String key);
    }
}

四、使用示例

  • 实现数据加载器接口:创建一个类实现CacheUtil.DataLoaderInterface接口,提供具体的数据加载逻辑。
public class UserCacheDataLoader implements CacheUtil.DataLoaderInterface {

    private final UserService userService; // 假设这是您的UserService

    @Autowired
    public UserCacheDataLoader(UserService userService) {
        this.userService = userService;
    }

    @Override
    public String loadDataFromDatabase(String key) {
        // 根据键(例如用户ID)从数据库加载数据
        User user = userService.findById(key);
        if (user != null) {
            return user.toString(); // 将用户信息转换为字符串
        }
        return null; // 用户不存在
    }
}
  • 配置Spring Bean:在Spring配置中注册CacheUtil Bean。
@Configuration
public class CacheConfig {

    @Bean
    public CacheUtil<UserCacheDataLoader> userCacheUtil(
        UserCacheDataLoader userCacheDataLoader) {
        // 假设已经配置好
        StringRedisTemplate stringRedisTemplate = stringRedisTemplate(); 
        return new CacheUtil<>(stringRedisTemplate, userCacheDataLoader);
    }

    // 其他配置...
}
  • 在应用中使用:在需要缓存的地方注入CacheUtil并使用它。
@RestController
@RequestMapping("/users")
public class UserController {

    private final CacheUtil<UserCacheDataLoader> userCacheUtil;

    @Autowired
    public UserController(CacheUtil<UserCacheDataLoader> userCacheUtil) {
        this.userCacheUtil = userCacheUtil;
    }

    @GetMapping("/{userId}")
    public String getUserDetails(@PathVariable String userId) {
        // 使用CacheUtil的get方法来获取缓存数据
        return userCacheUtil.get(userId);
    }

   
    // 更新缓存数据
    userCacheUtil.update(key, value);

    // 插入缓存数据
    userCacheUtil.insert(key, value);

    // 删除缓存数据
    userCacheUtil.delete(key);

    // 数据库更新后刷新缓存
    userCacheUtil.refreshCache(key);
}

注意:

  • 请确保StringRedisTemplate和数据加载器(如UserCacheDataLoader)已经正确配置并注入到CacheUtil中。
  • 根据业务逻辑的复杂性,loadDataFromDatabase方法可能需要合理的超时和重试策略。
  • 在实际部署前,进行充分的测试,确保缓存加载逻辑在各种情况下都能正常工作。

Sure!以下是一个示例代码,展示了如何在Java Spring Boot中使用布隆过滤器和Redis解决缓存穿透问题: 首先,你需要在pom.xml文件中添加相应的依赖: ```xml <dependencies> <!-- Spring Boot Starter Redis --> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-data-redis</artifactId> </dependency> <!-- Guava Bloom Filter --> <dependency> <groupId>com.google.guava</groupId> <artifactId>guava</artifactId> <version>30.1-jre</version> </dependency> </dependencies> ``` 接下来,创建一个布隆过滤器的工具类 BloomFilterUtil.java: ```java import com.google.common.hash.BloomFilter; import com.google.common.hash.Funnels; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.data.redis.core.RedisTemplate; import org.springframework.stereotype.Component; import javax.annotation.PostConstruct; @Component public class BloomFilterUtil { @Autowired private RedisTemplate<String, Object> redisTemplate; private BloomFilter<String> bloomFilter; // 设置布隆过滤器的预计插入数据量和误判率 private static final int EXPECTED_INSERTIONS = 1000000; private static final double FPP = 0.001; @PostConstruct public void init() { // 创建布隆过滤器,并将其保存到Redis中 bloomFilter = BloomFilter.create(Funnels.stringFunnel(), EXPECTED_INSERTIONS, FPP); redisTemplate.opsForValue().set("bloomFilter", bloomFilter); } public boolean mightContain(String key) { // 从Redis中获取布隆过滤器 bloomFilter = (BloomFilter<String>) redisTemplate.opsForValue().get("bloomFilter"); // 使用布隆过滤器判断key是否可能存在 return bloomFilter.mightContain(key); } public void put(String key) { // 从Redis中获取布隆过滤器 bloomFilter = (BloomFilter<String>) redisTemplate.opsForValue().get("bloomFilter"); // 将key添加到布隆过滤器中 bloomFilter.put(key); // 将更新后的布隆过滤器保存到RedisredisTemplate.opsForValue().set("bloomFilter", bloomFilter); } } ``` 然后,在你需要使用布隆过滤器解决缓存穿透的地方,注入 BloomFilterUtil,并使用它来判断数据是否存在于缓存中: ```java import org.springframework.beans.factory.annotation.Autowired; import org.springframework.web.bind.annotation.GetMapping; import org.springframework.web.bind.annotation.PathVariable; import org.springframework.web.bind.annotation.RestController; @RestController public class CacheController { @Autowired private BloomFilterUtil bloomFilterUtil; @GetMapping("/data/{key}") public String getData(@PathVariable String key) { // 先使用布隆过滤器判断key是否可能存在于缓存中 if (bloomFilterUtil.mightContain(key)) { // 如果可能存在,再从缓存中获取数据 String data = redisTemplate.opsForValue().get(key); if (data != null) { return data; } } // 如果数据不在缓存中,进行其他操作(例如从数据库中查询数据) // ... return null; } } ``` 这样,当有大量的请求同时访问某个缓存时,在经过布隆过滤器的判断后,可以避免无效的缓存查询请求,减轻了数据库的负载压力。 请注意,以上代码只是示例,实际使用时需要根据具体的业务需求进行适当的修改和优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值