关于矩阵分解:特征值分解 svd分解 mf分解 lmf分解 pca 以及个性化推荐 fm ffm als

本文深入探讨了矩阵分解的各种方法,包括特征值分解、SVD奇异值分解、矩阵因子化(MF)及其演变模型,如LFM、PMF、NNMF等。矩阵分解广泛应用于数据降维、异常值处理、个性化推荐系统和CTR/CVR预估等领域。此外,还讨论了PCA与SVD的关系以及Funk-SVD、ALS等协同过滤算法在矩阵填充中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


矩阵分解作用很多:矩阵填充(通过矩阵分解来填充原有矩阵,如als 就是填充原有矩阵),清理异常值与离群点,降维,压缩,个性化推荐,间接的特征组合(计算特征件相似度)

——————————————————————————————————————————

矩阵分解方法:


特征值分解:分解为一个特征向量矩阵 与  特征值(对角矩阵)

————————————

svd分解(奇异值分解):

X=USV
对角阵 S 对角线上的元素是奇异值, U V 是正交矩阵

mn矩阵分解为:[m*k] [k*k][k*n]矩阵,关于svd分解的基础:http://www.cnblogs.com/LeftNotEasy/archive/2011/01/19/svd-and-applications.html  这篇文章不错

————————————

mf分解(matrix factorization modelmn矩阵分解为:[m*k][k*n]矩阵,由他逐渐演化出LFM 隐语义分解(其中第一个矩阵代表用户矩阵,第二个矩阵代表商品矩阵,k代表用户 or 商品的隐式特征。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值