蝴蝶效应

本文介绍了一种基于蝴蝶效应原理的递推算法实现方法,通过一个简化的数学模型来探讨初始条件对结果的敏感依赖性。该模型利用递推公式 f(x) = (a*f(max(0,x-b)) + c*f(max(0,x-d)))%1000000007 来计算 f(n),并通过 Java 实现了这一算法。
摘要由CSDN通过智能技术生成
Problem Description

蝴蝶效应是气象学家洛伦兹1963年提出来的。其大意为:一只南美洲亚马孙河流域热带雨林中的蝴蝶,偶尔扇动几下翅膀,可能在两周后引起美国德克萨斯引起一场龙卷风。其原因在于:蝴蝶翅膀的运动,导致其身边的空气系统发生变化,并引起微弱气流的产生,而微弱气流的产生又会引起它四周空气或其他系统产生相应的变化,由此引起连锁反应,最终导致其他系统的极大变化。此效应说明,事物发展的结果,对初始条件具有极为敏感的依赖性,初始条件的极小偏差,将会引起结果的极大差异。

我们将问题简化为方程 f(x) = (a*f(max(0,x-b)) + c*f(max(0,x-d)))%1000000007。

现在给出不同的f(0)和n以及参数a,b,c,d,计算出f(n)。

Input

多组输入。

对于每组数据,有六个个整数n,f0(1 <= n <= 10000,1 <= f0 <= 10000),a,b,c,d(1 <= a,b,c,d <= 10000)。

Output

对于每组数据输出f(n)。

Sample Input
1 2 3 4 5 6
Sample Output
16
Hint
 
Source
zmx

(递推)

import java.util.*;
public class Main
{    
    public static void main(String args[])
    {  
     Scanner cin = new Scanner(System.in);
     long  mod = 1000000007;
     long []f = new long[10010];
     int n , i , a, b , c, d;
     while(cin.hasNext())
     {
    	n = cin.nextInt();
    	f[0] = cin.nextInt();
    	a = cin.nextInt();
    	b = cin.nextInt();
    	c = cin.nextInt();
    	d = cin.nextInt();
    	for(i = 1;i<=n;i++)
    	f[i] = ( a*f[Math.max(0, i-b)] + c*f[Math.max(0, i-d)] )%mod;
    	System.out.println(f[n]);
     }
     cin.close();
    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值