02.hadoop入门

一.离线分析Hadoop

1.Hadoop 概述

(1).Hadoop是一个由Apache基金会所开发的分布式系统基础架构。

(2).主要解决,海量数据的存储和海量数据的分析计算问题。

(3).广义上来说,Hadoop通常是指一个更广泛的概念——Hadoop生态圈。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ZX2MyqLh-1630888202314)(/6-1.png)]

2.Hadoop发展历史

(1).Hadoop创始人Doug Cutting,为 了实 现与Google类似的全文搜索功能,他在Lucene框架基础上进行优化升级,查询引擎和索引引擎。

(2).2001年年底Lucene成为Apache基金会的一个子项目。

(3).对于海量数据的场景,Lucene框 架面 对与Google同样的困难,存储海量数据困难,检 索海 量速度慢

(4).学习和模仿Google解决这些问题的办法 :微型版Nutch。

(5).可以说Google是Hadoop的思想之源(Google在大数据方面的三篇论文)

GFS —>HDFS

Map-Reduce —>MR

BigTable —>HBase

(6).2003-2004年,Google公开了部分GFS和MapReduce思想的细节,以此为基础Doug Cutting等人用了2年业余时间实现了DFS和MapReduce机制,使Nutch性能飙升。

(7).2005 年Hadoop 作为 Lucene的子项目 Nutch的一部分正式引入Apache基金会。

(8).2006 年 3 月份,Map-Reduce和Nutch Distributed File System (NDFS)分别被纳入到 Hadoop 项目中,Hadoop就此正式诞生,标志着大数据时代来临。

(9).名字来源于Doug Cutting儿子的玩具大象。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-r3cUruoT-1630888202318)(/2-1-2.png)]

3.Hadoop三大发行版本(了解)

Hadoop 三大发行版本:Apache、Cloudera、Hortonworks。

Apache 版本最原始(最基础)的版本,对于入门学习最好。2006

Cloudera 内部集成了很多大数据框架,对应产品 CDH。2008

Hortonworks 文档较好,对应产品 HDP。2011

Hortonworks 现在已经被 Cloudera 公司收购,推出新的品牌 CDP。

在这里插入图片描述

1.Apache Hadoop

官网地址:http://hadoop.apache.org
下载地址:https://hadoop.apache.org/releases.html

2.Cloudera Hadoop

官网地址:https://www.cloudera.com/downloads/cdh
下载地址:https://docs.cloudera.com/documentation/enterprise/6/releasenotes/topics/rg_cdh_6_download.html
(1)2008 年成立的 Cloudera 是最早将 Hadoop 商用的公司,为合作伙伴提供 Hadoop 的商用解决方案,主要是包括支持、咨询服务、培训。
(2)2009 年 Hadoop 的创始人 Doug Cutting 也加盟 Cloudera 公司。Cloudera 产品主要为 CDH,Cloudera Manager,Cloudera Support
(3)CDH 是 Cloudera 的 Hadoop 发行版,完全开源,比 Apache Hadoop 在兼容性,安全性,稳定性上有所增强。Cloudera 的标价为每年每个节点 10000 美元。
(4)Cloudera Manager 是集群的软件分发及管理监控平台,可以在几个小时内部署好一个 Hadoop 集群,并对集群的节点及服务进行实时监控。

3.Hortonworks Hadoop

官网地址:https://hortonworks.com/products/data-center/hdp/
下载地址:https://hortonworks.com/downloads/#data-platform
(1)2011 年成立的 Hortonworks 是雅虎与硅谷风投公司 Benchmark Capital 合资组建。
(2)公司成立之初就吸纳了大约 25 名至 30 名专门研究 Hadoop 的雅虎工程师,上述工程师均在 2005 年开始协助雅虎开发 Hadoop,贡献了 Hadoop80%的代码。
(3)Hortonworks 的主打产品是 Hortonworks Data Platform(HDP),也同样是 100%开源的产品,HDP 除常见的项目外还包括了 Ambari,一款开源的安装和管理系统。
(4)2018 年 Hortonworks 目前已经被 Cloudera 公司收购。

4.Hadoop 优势

**1.高可靠性:**Hadoop底层维护多个数据副本,所以即使Hadoop某个计算元素或存储出现故障,也不会导致数据的丢失。

在这里插入图片描述

**2.高扩展性:**在集群间分配任务数据,可方便的扩展数以千计的节点。

在这里插入图片描述

**3.高效性:**在MapReduce的思想下,Hadoop是并行工作的,以加快任务处理速度。

在这里插入图片描述

**4.高容错性:**能够自动将失败的任务重新分配。
在这里插入图片描述

5.Hadoop 组成(面试重点)

5.1.Hadoop1.x、2.x、3.x区别

在 Hadoop1.x 时 代 ,Hadoop中 的MapReduce同时处理业务逻辑运算和资源的调度,耦合性较大。在Hadoop2.x时 代,增加 了Yarn。Yarn只负责资 源 的 调 度 ,MapReduce 只负责运算。Hadoop3.x在组成上没有变化。

在这里插入图片描述

5.2.HDFS 架构概述

Hadoop Distributed File System,简称 HDFS,是一个分布式文件系统。

**1.NameNode(nn):**存储文件的元数据,如文件名,文件目录结构,文件属性(生成时间、副本数、文件权限),以及每个文件的块列表和块所在的DataNode等。

**2.DataNode(dn):**在本地文件系统存储文件块数据,以及块数据的校验和。

**3.Secondary NameNode(2nn):**每隔一段时间对NameNode元数据备份。

5.3.YARN 架构概述

Yet Another Resource Negotiator 简称 YARN ,另一种资源协调者,是 Hadoop 的资源管理器。

**1.ResourceManager(RM):**整个集群资源(内存、CPU等)的老大
**2.ApplicationMaster(AM):**单个任务运行的老大
**3.NodeManager(N M):**单个节点服务器资源老大
**4.Container:**容器,相当一台独立的服务器,里面封装了任务运行所需要的资源,如内存、CPU、磁盘、网络等。

在这里插入图片描述

说明1:客户端可以有多个
说明2:集群上可以运行多个ApplicationMaster
说明3:每个NodeManager上可以有多个Container

5.4.MapReduce 架构概述

MapReduce 将计算过程分为两个阶段:Map 和 Reduce
1.Map 阶段并行处理输入数据
2.Reduce 阶段对 Map 结果进行汇总

​ 任务需求:找出某老师2015年5月份的教学视频

在这里插入图片描述

5.5.HDFS、YARN、MapReduce 三者关系

在这里插入图片描述

5.6.大数据技术生态体系

在这里插入图片描述

图中涉及的技术名词解释如下:
**1.Sqoop:**Sqoop 是一款开源的工具,主要用于在 Hadoop、Hive 与传统的数据库(MySQL)间进行数据的传递,可以将一个关系型数据库(例如 :MySQL,Oracle 等)中的数据导进到 Hadoop 的 HDFS 中,也可以将 HDFS 的数据导进到关系型数据库中。
**2.Flume:**Flume 是一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统,Flume 支持在日志系统中定制各类数据发送方,用于收集数据;
**3.Kafka:**Kafka 是一种高吞吐量的分布式发布订阅消息系统;
**4.Spark:**Spark 是当前最流行的开源大数据内存计算框架。可以基于 Hadoop 上存储的大数据进行计算。
**5.Flink:**Flink 是当前最流行的开源大数据内存计算框架。用于实时计算的场景较多。
**6.Oozie:**Oozie 是一个管理 Hadoop 作业(job)的工作流程调度管理系统。
**7.Hbase:**HBase 是一个分布式的、面向列的开源数据库。HBase 不同于一般的关系数据库,它是一个适合于非结构化数据存储的数据库。
**8.Hive:**Hive 是基于 Hadoop 的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的 SQL 查询功能,可以将 SQL 语句转换为 MapReduce 任务进行运行。其优点是学习成本低,可以通过类 SQL 语句快速实现简单的 MapReduce 统计,不必开发专门的 MapReduce 应用,十分适合数据仓库的统计分析。
**9.ZooKeeper:**它是一个针对大型分布式系统的可靠协调系统,提供的功能包括:配置维护、名字服务、分布式同步、组服务等。

5.7.推荐系统框架图

在这里插入图片描述

二.Hadoop 运行环境搭建

1.环境准备

1.1.虚拟机安装

VMware安装

1.2.安装Linux系统

安装centos7.5

1.3.配置网络

1.查看 Linux 虚拟机的虚拟网络编辑器,编辑->虚拟网络编辑器->VMnet8

在这里插入图片描述

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-vvXjAgLA-1630888202343)(/3-0-2.png)]

2.查看 Windows 系统适配器 VMware Network Adapter VMnet8 的 IP 地址

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-7U00Mhip-1630888202345)(/3-0-3.png)]

3.修改虚拟机的静态 IP

 [root@hadoop100 ~]# vim /etc/sysconfig/network-scripts/ifcfgens33 

改成

DEVICE=ens33
TYPE=Ethernet
ONBOOT=yes 
BOOTPROTO=static 
NAME="ens33" 
PREFIX=24 
IPADDR=192.168.10.100
GATEWAY=192.168.10.2 
DNS1=192.168.10.2

4.保证 Linux 系统 ifcfg-ens33 文件中 IP 地址、虚拟网络编辑器地址和 Windows 系统 VM8 网络 IP 地址相同。

5.修改主机名

(1).修改主机名称

[root@hadoop100 ~]# vim /etc/hostname 
hadoop100 

(2).配置 Linux 主机名称映射 hosts 文件,打开/etc/hosts

[root@hadoop100 ~]# vim /etc/hosts 

添加如下内容

192.168.10.100 hadoop100
192.168.10.101 hadoop101
192.168.10.102 hadoop102
192.168.10.103 hadoop103
192.168.10.104 hadoop104
192.168.10.105 hadoop105 
192.168.10.106 hadoop106 
192.168.10.107 hadoop107 
192.168.10.108 hadoop108

6.重启主机

[root@hadoop100 ~]# reboot 

重启后查看主机名

[root@hadoop100 ~]# hostname
hadoop100

7.修改 windows 的主机映射文件(hosts 文件)

(1).如果操作系统是 window7,可以直接修改
(a)进入 C:\Windows\System32\drivers\etc 路径
(b)打开 hosts 文件并添加如下内容,然后保存

192.168.10.100 hadoop100 
192.168.10.101 hadoop101 
192.168.10.102 hadoop102
192.168.10.103 hadoop103 
192.168.10.104 hadoop104 
192.168.10.105 hadoop105
192.168.10.106 hadoop106 
192.168.10.107 hadoop107 
192.168.10.108 hadoop108 

(2).如果操作系统是 window10,先拷贝出来,修改保存以后,再覆盖即可
(a)进入 C:\Windows\System32\drivers\etc 路径
(b)拷贝 hosts 文件到桌面
(c)打开桌面 hosts 文件并添加如下内容

192.168.10.100 hadoop100 
192.168.10.101 hadoop101 
192.168.10.102 hadoop102
192.168.10.103 hadoop103 
192.168.10.104 hadoop104 
192.168.10.105 hadoop105
192.168.10.106 hadoop106 
192.168.10.107 hadoop107 
192.168.10.108 hadoop108 

(d)将桌面 hosts 文件覆盖 C:\Windows\System32\drivers\etc 路径 hosts 文件

1.4.安装软件

使用 yum 安装需要虚拟机可以正常上网,yum 安装前可以先测试下虚拟机联网情况。

1.安装 epel-release
注:Extra Packages for Enterprise Linux 是为“红帽系”的操作系统提供额外的软件包,适用于 RHEL、CentOS 和 Scientific Linux。相当于是一个软件仓库,大多数 rpm 包在官方repository 中是找不到的)

[root@hadoop100 ~]# yum install -y epel-release

注意:如果有某个进程占用端口,可使用kill -9 3030结束这个进程。

2.安装工具及编辑器

net-tool:工具包集合,包含 ifconfig 等命令

[root@hadoop100 ~]# yum install -y net-tools

vim:编辑器

[root@hadoop100 ~]# yum install -y vim

注意:如果 Linux 安装的是最小系统版,还需要安装如下工具;如果安装的是 Linux
桌面标准版,不需要执行如下操作

1.5.关闭防火墙

关闭防火墙及开机自启

[root@hadoop100 ~]# systemctl stop firewalld
[root@hadoop100 ~]# systemctl disable firewalld.service

注意:在企业开发时,通常单个服务器的防火墙时关闭的。公司整体对外会设置非常安
全的防火墙

1.6.创建新用户

创建 admin用户,并修改 admin用户的密码

[root@hadoop100 ~]# useradd admin
[root@hadoop100 ~]# passwd admin
1.7.配置权限

1.配置 admin用户具有 root 权限,方便后期加 sudo 执行 root 权限的命令

[root@hadoop100 ~]# vim /etc/sudoers

2.修改/etc/sudoers 文件

在%wheel 这行下面添加一行,如下所示:

## Allow root to run any commands anywhere
root ALL=(ALL) ALL
## Allows people in group wheel to run all commands
%wheel ALL=(ALL) ALL
admin ALL=(ALL) NOPASSWD:ALL

注意:admin这一行不要直接放到 root 行下面,因为所有用户都属于 wheel 组,你先配置了 admin具有NOPASSWD免密功能,但是程序执行到%wheel 行时,该功能又被覆盖回需要密码。所以 admin要放到%wheel 这行下面。

3.测试admin是否具有root的权限

在root用户下exit退出到admin或者su admin

[admin@hadoop100 opt]$ mkdir rh
mkdir: 无法创建目录 “rh”: 权限不够
[admin@hadoop100 opt]$ sudo mkdir rh
[admin@hadoop100 opt]$ ll
总用量 0
drwxr-xr-x 15 1106 4001 253 46 15:47 hadoop
drwxr-xr-x  7   10  143 245 105 2019 java
drwxr-xr-x  2 root root   6 722 17:34 rh
[admin@hadoop100 opt]$ rm -rf rh/
rm: 无法删除'rh/': 权限不够
[admin@hadoop100 opt]$ sudo rm -rf rh/
1.8.创建文件夹

1.在/opt 目录下创建 module、software 文件夹

[root@hadoop100 ~]# mkdir /opt/module
[root@hadoop100 ~]# mkdir /opt/software

[admin@hadoop100 ~]# sudo mkdir /opt/module
[admin@hadoop100 ~]# sudo mkdir /opt/software

2.修改 module、software 文件夹的所有者和所属组均为 admin用户

[root@hadoop100 ~]# chown admin:admin /opt/module 
[root@hadoop100 ~]# chown admin:admin /opt/software

注意:如果上面使用的是root创建则需要以上修改,admin创建则不需要此操作。

3.查看 module、software 文件夹的所有者和所属组

[root@hadoop100 ~]# cd /opt/
[root@hadoop100 opt]# ll
总用量 12
drwxr-xr-x. 2 admin admin 4096 528 17:18 module
drwxr-xr-x. 2 admin admin 4096 97 2017 rh
drwxr-xr-x. 2 admin admin 4096 528 17:18 software
1.9.卸载虚拟机自带的 JDK
[root@hadoop100 ~]# rpm -qa | grep -i java | xargs -n1 rpm -e --nodeps
  • rpm -qa:查询所安装的所有 rpm 软件包
  • grep -i:忽略大小写
  • xargs -n1:表示每次只传递一个参数
  • rpm -e –nodeps:强制卸载软件

注意:如果你的虚拟机是最小化安装不需要执行这一步。另外此操作切换到root用户下执行。

1.10.重启虚拟机
[root@hadoop100 ~]# reboot

2.克隆虚拟机

2.1.克隆模板机

1.利用模板机 hadoop100,克隆三台虚拟机:hadoop102 hadoop103 hadoop104

注意:克隆时,要先关闭 hadoop100

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-0kPJ6hCe-1630888202351)(/3-1-4.png)]

在这里插入图片描述

2.2.修改克隆机IP

修改克隆虚拟机的静态 IP

 [root@hadoop100 ~]# vim /etc/sysconfig/network-scripts/ifcfgens33 

改成

DEVICE=ens33
TYPE=Ethernet
ONBOOT=yes 
BOOTPROTO=static 
NAME="ens33" 
PREFIX=24 
IPADDR=192.168.10.102
GATEWAY=192.168.10.2 
DNS1=192.168.10.2
2.3.修改克隆机主机名
[root@hadoop100 ~]# vim /etc/hostname 
hadoop102

注意:因为hadoop100中已经配置过主机名称映射 hosts 文件所以这里就不在配置。

2.4.重启克隆机
[root@hadoop100 ~]# reboot
2.5.测试克隆机
[root@hadoop102 ~]# ping www.baidu.com
[root@hadoop102 ~]# hostname
hadoop102
[root@hadoop102 ~]# ifconfig

查看外网连接和主机名以及ip地址

3.安装 JDK

3.1.卸载现有 JDK

注意:安装 JDK 前,一定确保提前删除了虚拟机自带的 JDK。详细步骤见问文档 1.8 节中卸载 JDK 步骤。

3.2.传输文件

用 XShell 传输工具将 JDK 导入到 opt 目录下面的 software 文件夹下面

3.3.查看文件

在 Linux 系统下的 opt 目录中查看软件包是否导入成功

[admin@hadoop102 ~]$ ls /opt/software/

看到如下结果:

jdk-8u212-linux-x64.tar.gz
3.4.解压文件

解压 JDK 到/opt/module 目录下

[admin@hadoop102 software]$ tar -zxvf jdk-8u212-linuxx64.tar.gz -C /opt/module/
3.5.配置环境变量

配置 JDK 环境变量

1.新建/etc/profile.d/my_env.sh 文件

[admin@hadoop102 ~]$ sudo vim /etc/profile.d/my_env.sh

添加如下内容

#JAVA_HOME
export JAVA_HOME=/opt/module/jdk1.8.0_212
export PATH=$PATH:$JAVA_HOME/bin

2.保存后退出

:wq

3.source 一下/etc/profile 文件,让新的环境变量 PATH 生效

[admin@hadoop102 ~]$ source /etc/profile
3.6.测试环境

测试 JDK 是否安装成功

[admin@hadoop102 ~]$ java -version

如果能看到以下结果,则代表 Java 安装成功。

java version "1.8.0_212"

注意:重启(如果 java -version 可以用就不用重启)

[admin@hadoop102 ~]$ sudo reboot

4.安装 Hadoop

Hadoop 下载地址:https://archive.apache.org/dist/hadoop/common/hadoop-3.1.3/

4.1.传输文件

用 XShell 文件传输工具将 hadoop-3.1.3.tar.gz 导入到 opt 目录下面的 software 文件夹下面

4.2.查看文件

进入到 Hadoop 安装包路径下

[admin@hadoop102 ~]$ cd /opt/software/
4.3.解压文件

解压安装文件到/opt/module 下面

[admin@hadoop102 software]$ tar -zxvf hadoop-3.1.3.tar.gz -C /opt/module/

查看是否解压成功

[admin@hadoop102 software]$ ls /opt/module/hadoop-3.1.3
4.4.配置环境变量

将 Hadoop 添加到环境变量

1.获取 Hadoop 安装路径

[admin@hadoop102 hadoop-3.1.3]$ pwd /opt/module/hadoop-3.1.3

2.打开/etc/profile.d/my_env.sh 文件

[admin@hadoop102 hadoop-3.1.3]$ sudo vim/etc/profile.d/my_env.sh

3.在 my_env.sh 文件末尾添加如下内容:(shift+g)

#HADOOP_HOME
export HADOOP_HOME=/opt/module/hadoop-3.1.3
export PATH=$PATH:$HADOOP_HOME/bin
export PATH=$PATH:$HADOOP_HOME/sbin

4.保存并退出

 :wq

5.让修改后的文件生效

[admin@hadoop102 hadoop-3.1.3]$ source /etc/profile
4.5.测试环境

1.测试是否安装成功

[admin@hadoop102 hadoop-3.1.3]$ hadoop version 
Hadoop 3.1.3

2.重启(如果 Hadoop 命令不能用再重启虚拟机)

[admin@hadoop102 hadoop-3.1.3]$ sudo reboot

5.Hadoop 目录结构

5.1.Hadoop 目录结构
[admin@hadoop102 hadoop-3.1.3]$ ll
总用量 52
drwxr-xr-x. 2 admin admin 4096 522 2017 bin
drwxr-xr-x. 3 admin admin 4096 522 2017 etc
drwxr-xr-x. 2 admin admin 4096 522 2017 include
drwxr-xr-x. 3 admin admin 4096 522 2017 lib
drwxr-xr-x. 2 admin admin 4096 522 2017 libexec
-rw-r--r--. 1 admin admin 15429 522 2017 LICENSE.txt
-rw-r--r--. 1 admin admin 101 522 2017 NOTICE.txt
-rw-r--r--. 1 admin admin 1366 522 2017 README.txt
drwxr-xr-x. 2 admin admin 4096 522 2017 sbin
drwxr-xr-x. 4 admin admin 4096 522 2017 share
5.2.目录详情

(1)bin 目录:存放对 Hadoop 相关服务(hdfs,yarn,mapred)进行操作的脚本
(2)etc 目录:Hadoop 的配置文件目录,存放 Hadoop 的配置文件
(3)lib 目录:存放 Hadoop 的本地库(对数据进行压缩解压缩功能)
(4)sbin 目录:存放启动或停止 Hadoop 相关服务的脚本
(5)share 目录:存放 Hadoop 的依赖 jar 包、文档、和官方案例

三.Hadoop 运行模式

**Hadoop 官方网站:**http://hadoop.apache.org/
**Hadoop 运行模式包括:**本地模式、伪分布式模式以及完全分布式模式。

**本地模式:**单机运行,只是用来演示一下官方案例。生产环境不用!数据存储在linux本地。
**伪分布式模式:**也是单机运行,但是具备 Hadoop 集群的所有功能,一台服务器模拟一个分布式的环境。个别缺钱的公司用来测试,生产环境不用!数据存储在HDFS。
**完全分布式模式:**多台服务器组成分布式环境。生产环境使用。数据存储在HDFS/多台服务器工作。

1.本地运行模式

官方 WordCount

1.1.创建文件

创建在 hadoop-3.1.3 文件下面创建一个 wcinput 文件夹创建在 hadoop-3.1.3 文件下面创建一个 wcinput 文件夹

[admin@hadoop102 hadoop-3.1.3]$ mkdir wcinput

在 wcinput 文件下创建一个 word.txt 文件

[admin@hadoop102 hadoop-3.1.3]$ cd wcinput
1.2.编辑文件
[admin@hadoop102 wcinput]$ vim word.txt

在文件中输入如下内容

hadoop yarn
hadoop mapreduce
admin
admin

保存退出

:wq
1.3.执行程序

回到 Hadoop 目录/opt/module/hadoop-3.1.3

[admin@hadoop102 hadoop-3.1.3]$ bin/hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.3.jar wordcount wcinput/ ./wcoutput
1.4.查看结果
[admin@hadoop102 hadoop-3.1.3]$ cat wcoutput/part-r-00000

看到如下结果:

hadoop	2
mapreduce	1
admin	2
yarn	1

2.完全分布式运行模式***

分析:
1.准备 3 台客户机(关闭防火墙、静态 IP、主机名称)
2.安装 JDK
3.配置环境变量
4.安装 Hadoop
5.配置环境变量
6.配置集群
7.单点启动
8.配置 ssh
9.群起并测试集群

2.1.克隆虚拟机

以上已经完成克隆,这里不需要再克隆。

2.2.编写集群分发脚本 xsync

1.scp(secure copy)安全拷贝
(1).scp 定义
scp 可以实现服务器与服务器之间的数据拷贝。(from server1 to server2)
(2).基本语法

   scp     -r        $pdir/$fname         $user@$host:$pdir/$fname 

   命令   递归         要拷贝的文件路径/名称   目的地用户@主机:目的地路径/名称 

(3).案例实操
前提:在 hadoop102、hadoop103、hadoop104 都已经创建好的/opt/module、/opt/software 两个目录,并且已经把这两个目录修改为 admin:admin

[admin@hadoop102 ~]$ sudo chown admin:admin -R /opt/module

第一步:在 hadoop102 上,将 hadoop102 中/opt/module/jdk1.8.0_121 目录拷贝到hadoop103 上。

[admin@hadoop102 ~]$ scp -r /opt/module/jdk1.8.0_121  admin@hadoop103:/opt/module 

第二步:在 hadoop103 上,将 hadoop102 中/opt/module/hadoop-3.1.3 目录拷贝到hadoop103 上。

[admin@hadoop103 ~]$ scp -r admin@hadoop102:/opt/module/hadoop-3.1.3 /opt/module/ 

第三步:在 hadoop103 上操作,将 hadoop102 中/opt/module 目录下所有目录拷贝到hadoop104 上。

[admin@hadoop103 opt]$ scp -r admin@hadoop102:/opt/module/* admin@hadoop104:/opt/module 

2.rsync 远程同步工具

rsync 主要用于备份和镜像。具有速度快、避免复制相同内容和支持符号链接的优点。
rsync 和 scp 区别:用 rsync 做文件的复制要比 scp 的速度快,rsync 只对差异文件做更新。scp 是把所有文件都复制过去。

(1).基本语法

 rsync    -av       $pdir/$fname             $user@$host:$pdir/$fname

 命令   选项参数      要拷贝的文件路径/名称        目的地用户@主机:目的地路径/名称    

选项参数说明

选项功能
-a归档拷贝
-v显示复制过程

(2).案例实操

第一步:删除 hadoop103 中/opt/module/hadoop-3.1.3/wcinput

[admin@hadoop103 hadoop-3.1.3]$ rm -rf wcinput/ wcoutput

第二步:同步 hadoop102 中的/opt/module/hadoop-3.1.3 到 hadoop103

[admin@hadoop102 module]$ rsync -av hadoop-3.1.3/ admin@hadoop103:/opt/module/hadoop-3.1.3/ 

3.xsync 集群分发脚本

**(1).需求:**循环复制文件到所有节点的相同目录下

(2).需求分析:
第一步:rsync 命令原始拷贝:

rsync  -av     /opt/module     admin@hadoop103:/opt/ 

第二步:期望脚本:
xsync 要同步的文件名称
第三步:期望脚本在任何路径都能使用(脚本放在声明了全局环境变量的路径)

[admin@hadoop102 ~]$ echo $PATH /usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:/home/admin/.local/bin:/home/admin/bin:/opt/module/jdk1.8.0_121/bin

注意:只需要将脚本添加再/home/admin/bin路径下即可在全局下进行访问。

(3).脚本实现

第一步:在/home/admin/bin 目录下创建 xsync 文件

[admin@hadoop102 opt]$ cd /home/admin 
[admin@hadoop102 ~]$ mkdir bin 
[admin@hadoop102 ~]$ cd bin 
[admin@hadoop102 bin]$ vim xsync 

在该文件中编写如下代码

#!/bin/bash 
 
#1. 判断参数个数 
if [ $# -lt 1 ] 
then     
	echo Not Enough Arguement!     
	exit; 
fi 
#2. 遍历集群所有机器 
for host in hadoop102 hadoop103 hadoop104 
do     
	echo ====================  $host  ====================     
	#3. 遍历所有目录,挨个发送 
 
    for file in $@     
    do         
    	#4. 判断文件是否存在         
    	if [ -e $file ]             
    		then                 
    		    #5. 获取父目录                 
    		    pdir=$(cd -P $(dirname $file); pwd) 
 
                #6. 获取当前文件的名称                 
                fname=$(basename $file)                 
                ssh $host "mkdir -p $pdir"                 
                rsync -av $pdir/$fname $host:$pdir             
         else                 
         	echo $file does not exists!         
         fi    
     done 
done 

第二步:修改脚本 xsync 具有执行权限

[admin@hadoop102 bin]$ chmod +x xsync 
或
[admin@hadoop102 bin]$ chmod 777 xsync 

第三步:测试脚本 ,将bin目录分发到其他主机

[admin@hadoop102 ~]$ xsync /home/admin/bin 

第四步:将脚本复制到/bin 中,以便全局调用

[admin@hadoop102 bin]$ sudo cp xsync /bin/ 

注意:此步骤实际操作中没有用,后续研究

第五步:同步环境变量配置(root 所有者)

[admin@hadoop102 ~]$ sudo ./bin/xsync /etc/profile.d/my_env.sh

注意:如果用了 sudo,那么 xsync 一定要给它的路径补全。

让环境变量生效

[admin@hadoop103 bin]$ source /etc/profile 
[admin@hadoop104 opt]$ source /etc/profile 
2.3.SSH 无密登录配置

1.配置 ssh

(1).基本语法
ssh 另一台电脑的 IP 地址
(2).ssh 连接时出现 Host key verification failed 的解决方法

[admin@hadoop102 ~]$ ssh hadoop103

如果出现如下内容

Are you sure you want to continue connecting (yes/no)?  

输入 yes,并回车

(3).退回到 hadoop102

[admin@hadoop103 ~]$ exit 

2.无密钥配置

(1).免密登录原理

在这里插入图片描述

(2).生成公钥和私钥

[admin@hadoop102 ~]$ cd /home/admin
[admin@hadoop102 ~]$ ls -al
[admin@hadoop102 ~]$ cd .ssh/
[admin@hadoop102 .ssh]$ ssh-keygen -t rsa 

然后敲(三个回车),就会生成两个文件 id_rsa(私钥)、id_rsa.pub(公钥)

(3).将公钥拷贝到要免密登录的目标机器上

[admin@hadoop102 .ssh]$ ssh-copy-id hadoop102 
[admin@hadoop102 .ssh]$ ssh-copy-id hadoop103 
[admin@hadoop102 .ssh]$ ssh-copy-id hadoop104 

注意:
还需要在 hadoop103 上采用 admin账号配置一下无密登录到 hadoop102、hadoop103、hadoop104 服务器上。
还需要在 hadoop104 上采用 admin账号配置一下无密登录到 hadoop102、hadoop103、hadoop104 服务器上。
还需要在 hadoop102 上采用 root 账号,配置一下无密登录到 hadoop102、hadoop103、hadoop104;

可以在.ssh下查看生成的文件记录

[admin@hadoop102 .ssh]$ ll
总用量 16
-rw------- 1 admin admin 1704 723 16:27 authorized_keys
-rw------- 1 admin admin 2602 723 16:21 id_rsa
-rw-r--r-- 1 admin admin  568 723 16:21 id_rsa.pub
-rw-r--r-- 1 admin admin  558 723 15:59 known_hosts
[admin@hadoop102 .ssh]$ cat known_hosts 

3. .ssh 文件夹下(~/.ssh)的文件功能解释

选项解释
known_hosts记录ssh访问过计算机的公钥(public key)
id_rsa生成的私钥
id_rsa.pub生成的公钥
authorized_keys存放授权过的无密登录服务器公钥
2.4.集群配置

1.集群部署规划

组件hadoop102hadoop103hadoop104
HDFSNameNode、DataNodeDataNodeSecondaryNameNode、DataNode
YARNNodeManagerResourceManager、NodeManagerNodeManager

注意:

  • NameNode 和 SecondaryNameNode 不要安装在同一台服务器。
  • ResourceManager 也很消耗内存,不要和 NameNode、SecondaryNameNode 配置在同一台机器上。

2.配置文件说明
Hadoop 配置文件分两类:默认配置文件和自定义配置文件,只有用户想修改某一默认配置值时,才需要修改自定义配置文件,更改相应属性值。

(1).默认配置文件

要获取的默认文件文件存放在Hadoop的jar包中的位置
[core-default.xml]hadoop-common-3.1.3.jar/core-default.xml
[hdfs-default.xml]hadoop-hdfs-3.1.3.jar/hdfs-default.xml
[yarn-default.xml]hadoop-yarn-common-3.1.3.jar/yarn-default.xml
[mapred-default.xml]hadoop-mapreduce-client-core-3.1.3.jar/mapred-default.xml

(2).自定义配置文件

core-site.xml、hdfs-site.xml、yarn-site.xml、mapred-site.xml 四个配置文件存放在$HADOOP_HOME/etc/hadoop 这个路径上,用户可以根据项目需求重新进行修改配置。

(3).配置集群

  • 核心配置文件

    配置 core-site.xml

    [admin@hadoop102 ~]$ cd $HADOOP_HOME/etc/hadoop 
    [admin@hadoop102 hadoop]$ vim core-site.xml 
    

    注意:这里的$HADOOP_HOME是cd opt/module/hadoop-3.1.3/etc/hadoop

    文件内容如下:

    <?xml version="1.0" encoding="UTF-8"?> 
    <?xml-stylesheet type="text/xsl" href="configuration.xsl"?> 
     
    <configuration>     
        <!-- 指定 NameNode 的地址 -->     
        <property>         
            <name>fs.defaultFS</name>         
            <value>hdfs://hadoop102:8020</value>     
        </property> 
     
        <!-- 指定 hadoop 数据的存储目录 -->     
        <property>         
            <name>hadoop.tmp.dir</name>         
            <value>/opt/module/hadoop-3.1.3/data</value>     
        </property> 
     
        <!-- 配置 HDFS 网页登录使用的静态用户为 admin -->     
        <property>         
            <name>hadoop.http.staticuser.user</name>         
            <value>admin</value>     
        </property> 
    </configuration>
    
  • HDFS 配置文件

    配置 hdfs-site.xml

[admin@hadoop102 hadoop]$ vim hdfs-site.xml 

文件内容如下:

<?xml version="1.0" encoding="UTF-8"?> 
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?> 
 
<configuration>  
    <!-- nn web 端访问地址-->  
    <property>         
        <name>dfs.namenode.http-address</name>         
        <value>hadoop102:9870</value>     
    </property>  
    <!-- 2nn web 端访问地址-->     
    <property>        
        <name>dfs.namenode.secondary.http-address</name>         
        <value>hadoop104:9868</value>     
    </property> 
</configuration> 
  • YARN 配置文件

    配置 yarn-site.xml

[admin@hadoop102 hadoop]$ vim yarn-site.xml 

文件内容如下:

<?xml version="1.0" encoding="UTF-8"?> 
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?> 
<configuration>     
    <!-- 指定 MR 走 shuffle -->     
    <property>         
        <name>yarn.nodemanager.aux-services</name>         
        <value>mapreduce_shuffle</value>     
    </property> 
 
    <!-- 指定 ResourceManager 的地址-->     
    <property>         
        <name>yarn.resourcemanager.hostname</name>         
        <value>hadoop103</value>     
    </property> 
 
    <!-- 环境变量的继承 -->     
    <property>         
        <name>yarn.nodemanager.env-whitelist</name>         
    <value>JAVA_HOME,HADOOP_COMMON_HOME,HADOOP_HDFS_HOME,HADOOP_CONF_DIR,CLASSPATH_PREPEND_DISTCACHE,HADOOP_YARN_HOME,HADOOP_MAPRED_HOME</value>     
    </property> 
</configuration>
  • MapReduce 配置文件

    配置 mapred-site.xml

[admin@hadoop102 hadoop]$ vim mapred-site.xml 

文件内容如下:

<?xml version="1.0" encoding="UTF-8"?> 
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?> 
 
<configuration>  
    <!-- 指定 MapReduce 程序运行在 Yarn 上 -->     
    <property>        
        <name>mapreduce.framework.name</name>         
        <value>yarn</value>     
    </property> 
</configuration>

(4).在集群上分发配置好的 Hadoop 配置文件

[admin@hadoop102 etc]$ xsync hadoop/ 

(5).去 103 和 104 上查看文件分发情况

[admin@hadoop103 ~]$ cat /opt/module/hadoop3.1.3/etc/hadoop/core-site.xml 
[admin@hadoop104 ~]$ cat /opt/module/hadoop3.1.3/etc/hadoop/core-site.xml 
2.5.群起集群

1.配置 workers

[admin@hadoop102 hadoop]$ vim /opt/module/hadoop3.1.3/etc/hadoop/workers 

在该文件中增加如下内容:

hadoop102 
hadoop103 
hadoop104

注意:配置工作节点,该文件中添加的内容结尾不允许有空格,文件中不允许有空行。

同步所有节点配置文件

[admin@hadoop102 hadoop]$ xsync /opt/module/hadoop-3.1.3/etc 

2.启动集群

(1).如果集群是第一次启动,需要在 hadoop102 节点格式化 NameNode(注意:格式化 NameNode,会产生新的集群 id,导致 NameNode 和 DataNode 的集群 id 不一致,集群找不到已往数据。如果集群在运行过程中报错,需要重新格式化 NameNode 的话,一定要先停止 namenode 和 datanode 进程,并且要删除所有机器的 data 和 logs 目录,然后再进行格式化。)

[admin@hadoop102 hadoop-3.1.3]$ hdfs namenode -format 

(2).启动 HDFS

[admin@hadoop102 hadoop-3.1.3]$ sbin/start-dfs.sh 

查看各主机上的节点:

[admin@hadoop102 hadoop-3.1.3]$ jps
2688 DataNode
2928 Jps
2530 NameNode
[admin@hadoop103 ~]$ jps
2419 Jps
2343 DataNode
[admin@hadoop104 ~]$ jps
2520 Jps
2473 SecondaryNameNode
2346 DataNode

(3).在配置了 ResourceManager 的节点(hadoop103)启动 YARN

[admin@hadoop103 hadoop-3.1.3]$ sbin/start-yarn.sh 

查看主机节点情况

[admin@hadoop103 hadoop-3.1.3]$ jps
3139 Jps
2676 ResourceManager
2343 DataNode
2824 NodeManager
[admin@hadoop102 hadoop-3.1.3]$ jps
2688 DataNode
2530 NameNode
5042 NodeManager
5213 Jps
[admin@hadoop104 ~]$ jps
2897 Jps
2473 SecondaryNameNode
2346 DataNode
2766 NodeManager

(4).Web 端查看 HDFS 的 NameNode

  • 浏览器中输入:http://hadoop102:9870
  • 查看 HDFS 上存储的数据信息

(5).Web 端查看 YARN 的 ResourceManager

  • 浏览器中输入:http://hadoop103:8088
  • 查看 YARN 上运行的 Job 信息

3.集群基本测试

(1).上传文件到集群

  • 上传小文件
[admin@hadoop102 ~]$ hadoop fs -mkdir /input 
[admin@hadoop102 ~]$ hadoop fs -put $HADOOP_HOME/wcinput/word.txt /input 
或
[admin@hadoop102 hadoop-3.1.3]$ hadoop fs -put wcinput/word.txt /wcinput

在http://hadoop102:9870 中查看文件

在这里插入图片描述

注意:此时Replication表示有3份副本,分别存储在hadoop102、103、104上。

在这里插入图片描述

  • 上传大文件
[admin@hadoop102 ~]$ hadoop fs -put  /opt/software/jdk-8u121-linux-x64.tar.gz  / 

(2).上传文件后查看文件存放在什么位置

  • 查看 HDFS 文件存储路径
[admin@hadoop102 subdir0]$ pwd /opt/module/hadoop-3.1.3/data/dfs/data/current/BP-1436128598192.168.10.102-1610603650062/current/finalized/subdir0/subdir0 
  • 查看 HDFS 在磁盘存储文件内容
[admin@hadoop102 subdir0]$ ll
-rw-rw-r-- 1 admin admin        39 729 10:08 blk_1073741825
-rw-rw-r-- 1 admin admin        11 729 10:08 blk_1073741825_1001.meta
-rw-rw-r-- 1 admin admin 134217728 729 10:51 blk_1073741826
-rw-rw-r-- 1 admin admin   1048583 729 10:51 blk_1073741826_1002.meta
-rw-rw-r-- 1 admin admin  49029041 729 10:51 blk_1073741827
-rw-rw-r-- 1 admin admin    383047 729 10:51 blk_1073741827_1003.meta
[admin@hadoop102 subdir0]$ cat blk_1073741825
hadoop yarn
hadoop mapreduce
admin
admin

(3).拼接

-rw-rw-r-- 1 admin admin        39 729 10:08 blk_1073741825
-rw-rw-r-- 1 admin admin        11 729 10:08 blk_1073741825_1001.meta
-rw-rw-r-- 1 admin admin 134217728 729 10:51 blk_1073741826
-rw-rw-r-- 1 admin admin   1048583 729 10:51 blk_1073741826_1002.meta
-rw-rw-r-- 1 admin admin  49029041 729 10:51 blk_1073741827
-rw-rw-r-- 1 admin admin    383047 729 10:51 blk_1073741827_1003.meta
[admin@hadoop102 subdir0]$ cat blk_1073741836>>tmp.tar.gz 
[admin@hadoop102 subdir0]$ cat blk_1073741837>>tmp.tar.gz 
[admin@hadoop102 subdir0]$ ll
-rw-rw-r-- 1 admin admin        39 729 10:08 blk_1073741825
-rw-rw-r-- 1 admin admin        11 729 10:08 blk_1073741825_1001.meta
-rw-rw-r-- 1 admin admin 134217728 729 10:51 blk_1073741826
-rw-rw-r-- 1 admin admin   1048583 729 10:51 blk_1073741826_1002.meta
-rw-rw-r-- 1 admin admin  49029041 729 10:51 blk_1073741827
-rw-rw-r-- 1 admin admin    383047 729 10:51 blk_1073741827_1003.meta
-rw-rw-r-- 1 admin admin 183246769 729 11:00 tmp.tar.gz
[admin@hadoop102 subdir0]$ tar -zxvf tmp.tar.gz

注意:相当于jdk上传过程中被拆分为多份,拼接后是一个完整的jdk

(4).下载

[admin@hadoop104 hadoop-3.1.3]$ hadoop fs -get /jdk-8u121-linux-x64.tar.gz ./

(5).执行 wordcount 程序

[admin@hadoop102 hadoop-3.1.3]$ hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.3.jar wordcount /wcinput /wcoutput

此时执行过程中查看http://hadoop103:8088/可以看到一个任务正在执行。

在这里插入图片描述

执行完毕后查看http://hadoop102:9870/explorer.html#

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

2.6.配置历史服务器

为了查看程序的历史运行情况,需要配置一下历史服务器。

在这里插入图片描述

此时在http://hadoop103:8088/中历史无法查看。

具体配置步骤如下:

(1).配置 mapred-site.xml

[admin@hadoop102 hadoop]$ vim mapred-site.xml 

在该文件里面增加如下配置:

<!-- 历史服务器端地址 --> 
<property>
    <name>mapreduce.jobhistory.address</name>
    <value>hadoop102:10020</value>      			 
</property> 
<!-- 历史服务器 web 端地址 --> 
<property>     
    <name>mapreduce.jobhistory.webapp.address</name>
    <value>hadoop102:19888</value>
</property> 

(2).分发配置

[admin@hadoop102 hadoop]$ xsync $HADOOP_HOME/etc/hadoop/mapred-site.xml

注意:分发完毕后停止yarn服务,然后再重启。

[admin@hadoop103 hadoop-3.1.3]$ sbin/stop-yarn.sh
[admin@hadoop103 hadoop-3.1.3]$ sbin/start-yarn.sh

(3).在 hadoop102 启动历史服务器

[admin@hadoop102 hadoop-3.1.3]$ bin/mapred --daemon start historyserver

mapred --daemon为启动守护进程。

(4).查看历史服务器是否启动

[admin@hadoop102 hadoop-3.1.3]$ jps
32358 JobHistoryServer
32042 NodeManager
32397 Jps
23007 NameNode
23167 DataNode

(5).查看 JobHistory

http://hadoop102:19888/jobhistory

(6).准备数据并检测

[admin@hadoop102 hadoop-3.1.3]$ hadoop fs -mkdir /input
[admin@hadoop102 hadoop-3.1.3]$ hadoop fs -put wcinput/word.txt /input
[admin@hadoop102 hadoop-3.1.3]$ hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.3.jar wordcount /input /output

刷新http://hadoop103:8088/cluster并点击History

2.7.配置日志的聚集

日志聚集概念:应用运行完成以后,将程序运行日志信息上传到 HDFS 系统上。

在这里插入图片描述

日志聚集功能好处:可以方便的查看到程序运行详情,方便开发调试。

注意:开启日志聚集功能,需要重新启动 NodeManager 、ResourceManager 和HistoryServer。

开启日志聚集功能具体步骤如下:
(1).配置 yarn-site.xml

[admin@hadoop102 hadoop]$ vim yarn-site.xml 

在该文件里面增加如下配置。

<!-- 开启日志聚集功能 --> 
<property>     
    <name>yarn.log-aggregation-enable</name>     
    <value>true</value> </property> 
<!-- 设置日志聚集服务器地址 --> 
<property>       
    <name>yarn.log.server.url</name>       
    <value>http://hadoop102:19888/jobhistory/logs</value> 
</property> 
<!-- 设置日志保留时间为 7 天 --> 
<property>     
    <name>yarn.log-aggregation.retain-seconds</name>     
    <value>604800</value> 
</property>

(2).分发配置

[admin@hadoop102 hadoop]$ xsync yarn-site.xml

(3).关闭 NodeManager 、ResourceManager 和 HistoryServer

[admin@hadoop103 hadoop-3.1.3]$ mapred --daemon stop historyserver
[admin@hadoop103 hadoop-3.1.3]$ sbin/stop-yarn.sh 

(4).启动 NodeManager 、ResourceManage 和 HistoryServer

[admin@hadoop103 ~]$ start-yarn.sh 
[admin@hadoop102 ~]$ mapred --daemon start historyserver 

(5).删除 HDFS 上已经存在的输出文件

[admin@hadoop102 ~]$ hadoop fs -rm -r /output 

(6).执行 WordCount 程序

[admin@hadoop102 hadoop-3.1.3]$ hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.3.jar wordcount /input /output2 

(7).查看日志

  • 历史服务器地址

​ http://hadoop102:19888/jobhistory

  • 历史任务列表

在这里插入图片描述

  • 查看任务运行日志

在这里插入图片描述

  • 运行日志详情

在这里插入图片描述

2.8.集群启动/停止方式总结

(1).各个模块分开启动/停止(配置 ssh 是前提)常用

  • 整体启动/停止 HDFS
start-dfs.sh
stop-dfs.sh  
  • 整体启动/停止 YARN
start-yarn.sh
stop-yarn.sh

(2).各个服务组件逐一启动/停止

  • 分别启动/停止 HDFS 组件
hdfs --daemon start namenode/datanode/secondarynamenode  
hdfs --daemon stop namenode/datanode/secondarynamenode  

举例:这里可以kill -9 9501杀掉DataNode,然后再单一启动

hdfs --daemon start datanode  

注意:这里的进程号根据jps中实际进程号而定。

  • 启动/停止 YARN
yarn --daemon start  resourcemanager/nodemanager 
yarn --daemon stop  resourcemanager/nodemanager 

举例:这里可以kill -9 11294杀掉NodeManager,然后再单一启动

yarn --daemon start  nodemanager
2.9.编写 Hadoop 集群常用脚本

(1).Hadoop 集群启停脚本(包含 HDFS,Yarn,Historyserver):myhadoop.sh

[admin@hadoop102 ~]$ cd /home/admin/bin 
[admin@hadoop102 bin]$ vim myhadoop.sh 
  • 输入如下内容
#!/bin/bash
if [ $# -lt 1 ]
then
 echo "No Args Input..."
 exit ;
fi
case $1 in
"start")
 echo " =================== 启动 hadoop 集群 ==================="
 echo " --------------- 启动 hdfs ---------------"
 ssh hadoop102 "/opt/module/hadoop-3.1.3/sbin/start-dfs.sh"
 echo " --------------- 启动 yarn ---------------"
 ssh hadoop103 "/opt/module/hadoop-3.1.3/sbin/start-yarn.sh"
 echo " --------------- 启动 historyserver ---------------"
 ssh hadoop102 "/opt/module/hadoop-3.1.3/bin/mapred --daemon start
historyserver"
;;
"stop")
 echo " =================== 关闭 hadoop 集群 ==================="
 echo " --------------- 关闭 historyserver ---------------"
 ssh hadoop102 "/opt/module/hadoop-3.1.3/bin/mapred --daemon stop
historyserver"
 echo " --------------- 关闭 yarn ---------------"
 ssh hadoop103 "/opt/module/hadoop-3.1.3/sbin/stop-yarn.sh"
 echo " --------------- 关闭 hdfs ---------------"
 ssh hadoop102 "/opt/module/hadoop-3.1.3/sbin/stop-dfs.sh"
;;
*)
 echo "Input Args Error..."
;;
esac
  • 保存后退出,然后赋予脚本执行权限
[admin@hadoop102 bin]$ chmod +x myhadoop.sh 
  • 执行脚本文件
[admin@hadoop102 bin]$ myhadoop.sh stop
[admin@hadoop102 bin]$ jps
37520 Jps

注意:此时在hadoop102、103、104上都可以查看停止情况。

(2).查看三台服务器 Java 进程脚本:jpsall

[admin@hadoop102 ~]$ cd /home/admin/bin 
[admin@hadoop102 bin]$ vim jpsall 
  • 输入如下内容
#!/bin/bash
for host in hadoop102 hadoop103 hadoop104
do
 echo =============== $host ===============
 ssh $host jps
done
  • 保存后退出,然后赋予脚本执行权限
[admin@hadoop102 bin]$ chmod +x jpsall 
  • 分发/home/admin/bin 目录,保证自定义脚本在三台机器上都可以使用
[admin@hadoop102 ~]$ xsync /home/admin/bin/
  • 执行脚本文件
[admin@hadoop102 ~]$ jpsall
=============== hadoop102 ===============
38480 JobHistoryServer
39060 Jps
38261 NodeManager
37915 DataNode
37740 NameNode
=============== hadoop103 ===============
19207 DataNode
19547 NodeManager
19404 ResourceManager
20191 Jps
=============== hadoop104 ===============
18706 Jps
18030 DataNode
18159 SecondaryNameNode
18271 NodeManager

注意:此时可以在hadoop102、103、104都可以使用jpsall查看集群所有节点。

2.10.Hadoop版本区别(面试题)

(1).常用端口号说明

端口名称Hadoop2.xHadoop3.x
NameNode内部通信端口(HDFS)8020/90008020/9000/9820
NameNode HTTP UI 对外查询(HDFS)500709870
MapReduce 查看执行任务端口(Yarn)80888088
历史服务器通信端口1988819888

(2).常用的配置文件

版本配置文件
Hadoop2.xcore-site.xml、hdfs-site.xml、yarn-site.xml、mapred-site.xml、slaves
Hadoop3.xcore-site.xml、hdfs-site.xml、yarn-site.xml、mapred-site.xml、workers
2.11.集群时间同步(不讲)

​ 如果服务器在公网环境(能连接外网),可以不采用集群时间同步,因为服务器会定期 和公网时间进行校准;

​ 如果服务器在内网环境,必须要配置集群时间同步,否则时间久了,会产生时间偏差, 导致集群执行任务时间不同步。

1.需求

​ 找一个机器,作为时间服务器,所有的机器与这台集群时间进行定时的同步,生产环境 根据任务对时间的准确程度要求周期同步。测试环境为了尽快看到效果,采用 1 分钟同步一 次。

在这里插入图片描述

2.时间服务器配置(必须 root 用户)

(1).查看所有节点 ntpd 服务状态和开机自启动状态

[admin@hadoop102 ~]$ sudo systemctl status ntpd
[admin@hadoop102 ~]$ sudo systemctl start ntpd
[admin@hadoop102 ~]$ sudo systemctl is-enabled ntpd

(2).修改 hadoop102 的 ntp.conf 配置文件

[admin@hadoop102 ~]$ sudo vim /etc/ntp.conf

修改内容如下

  • 第一步

    授权 192.168.10.0-192.168.10.255 网段上的所有机器可以从这台机器上查 询和同步时间

#restrict 192.168.10.0 mask 255.255.255.0 nomodify notrap 

#restrict 192.168.10.0 mask 255.255.255.0 nomodify notrap
  • 第二步

集群在局域网中,不使用其他互联网上的时间

server 0.centos.pool.ntp.org iburst
server 1.centos.pool.ntp.org iburst
server 2.centos.pool.ntp.org iburst
server 3.centos.pool.ntp.org iburst

#server 0.centos.pool.ntp.org iburst
#server 1.centos.pool.ntp.org iburst
#server 2.centos.pool.ntp.org iburst
#server 3.centos.pool.ntp.org iburst
  • 第三步

当该节点丢失网络连接,依然可以采用本地时间作为时间服务器为集群中 的其他节点提供时间同步

server 127.127.1.0
fudge 127.127.1.0 stratum 10

(3).修改 hadoop102 的/etc/sysconfig/ntpd 文件

[admin@hadoop102 ~]$ sudo vim /etc/sysconfig/ntpd

增加内容如下(让硬件时间与系统时间一起同步)

SYNC_HWCLOCK=yes

(4).重新启动 ntpd 服务

[admin@hadoop102 ~]$ sudo systemctl start ntpd

(5).设置 ntpd 服务开机启动

[admin@hadoop102 ~]$ sudo systemctl enable ntpd

3.其他机器配置(必须 root 用户)

(1).关闭所有节点上 ntp 服务和自启动

[admin@hadoop103 ~]$ sudo systemctl stop ntpd
[admin@hadoop103 ~]$ sudo systemctl disable ntpd
[admin@hadoop104 ~]$ sudo systemctl stop ntpd
[admin@hadoop104 ~]$ sudo systemctl disable ntpd

(2).在其他机器配置 1 分钟与时间服务器同步一次

[admin@hadoop103 ~]$ sudo crontab -e

编写定时任务如下:

*/1 * * * * /usr/sbin/ntpdate hadoop102

(3).修改任意机器时间

[admin@hadoop103 ~]$ sudo date -s "2021-9-11 11:11:11"

(4).1 分钟后查看机器是否与时间服务器同步

[admin@hadoop103 ~]$ sudo date

注意:以上操作如果连接有外网可以不做,时间可以自动同步。

四.常见错误及解决方案(自己操作)

1.防火墙没关闭、或者没有启动 YARN

INFO client.RMProxy: Connecting to ResourceManager at hadoop108/192.168.10.108:8032

2.主机名称配置错误

3.IP 地址配置错误

4.ssh 没有配置好

5.root 用户和 admin两个用户启动集群不统一

6.配置文件修改不细心

7.不识别主机名称

java.net.UnknownHostException: hadoop102: hadoop102
 at
java.net.InetAddress.getLocalHost(InetAddress.java:1475)
 at
org.apache.hadoop.mapreduce.JobSubmitter.submitJobInternal(Job
Submitter.java:146)
 at org.apache.hadoop.mapreduce.Job$10.run(Job.java:1290)
 at org.apache.hadoop.mapreduce.Job$10.run(Job.java:1287)
 at java.security.AccessController.doPrivileged(Native
Method)
at javax.security.auth.Subject.doAs(Subject.java:415)

解决办法:

(1).在/etc/hosts 文件中添加 192.168.10.102 hadoop102

(2).主机名称不要起 hadoop hadoop000 等特殊名称

8.DataNode 和 NameNode 进程同时只能工作一个

在这里插入图片描述

9.执行命令不生效,粘贴 Word 中命令时,遇到-和长–没区分开。导致命令失效 解决办法:尽量不要粘贴 Word 中代码。

10.jps 发现进程已经没有,但是重新启动集群,提示进程已经开启。 原因是在 Linux 的根目录下/tmp 目录中存在启动的进程临时文件,将集群相关进程删 除掉,再重新启动集群。

11.jps 不生效 原因:全局变量 hadoop java 没有生效。

解决办法:需要 source /etc/profile 文件。

12. 8088 端口连接不上

[admin@hadoop102 桌面]$ cat /etc/hosts 

注释掉如下代码

#127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomain4
#::1 hadoop102

enable ntpd


**3.其他机器配置(必须 root 用户)**

**(1).关闭所有节点上 ntp 服务和自启动**

```shell
[admin@hadoop103 ~]$ sudo systemctl stop ntpd
[admin@hadoop103 ~]$ sudo systemctl disable ntpd
[admin@hadoop104 ~]$ sudo systemctl stop ntpd
[admin@hadoop104 ~]$ sudo systemctl disable ntpd

(2).在其他机器配置 1 分钟与时间服务器同步一次

[admin@hadoop103 ~]$ sudo crontab -e

编写定时任务如下:

*/1 * * * * /usr/sbin/ntpdate hadoop102

(3).修改任意机器时间

[admin@hadoop103 ~]$ sudo date -s "2021-9-11 11:11:11"

(4).1 分钟后查看机器是否与时间服务器同步

[admin@hadoop103 ~]$ sudo date

注意:以上操作如果连接有外网可以不做,时间可以自动同步。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

XYDrestart

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值