如何利用好手机信号数据

现有新疆乌鲁木齐市中心的手机信号数据,是一个真的特别棒的数据。一定要利用好这个数据,做一些研究,并且完成毕业设计。

数据描述

手机信号数据分为两种:
在这里插入图片描述

  • 居住人口

定义:
1)居住地观测时段:21:00到次日8:00;
2)用户每日在观测时间段内被观测到的秒数,进行月度累加,并进行排名,取排名最高的为用户的居住地;
3)一个月内出现天数超过10天。

包含字段:
归属地(本地/外地)、富裕度、年龄

  • 全目的出行OD(两天的)

定义:
全天24小时,每一个格网出发、到达到另一个格网的数量。

包含字段:
归属地(本地/外地)、富裕度

  • 分小时网格人口热力(两天的)

定义:全天24小时,在每个格网,停留在这个格网超过x分钟的人口数量。

数据可用性

1) 城市功能分区

  • 文献1

之前读过刘瑜老师的一篇文章
在这里插入图片描述
(grouped IS)使用出租车轨迹数据,统计全天,每一个格网内到不同土地利用类型的数量。随机分配土地利用类型,之后聚类。比较聚类结果与假设类型,不断迭代。当二者差距(迭代前后类型有变化的像元数)小于某个特定值,迭代介绍。得到每个格网的聚类结果,然后比对谷歌地图与平均时普曲线,识别出土地利用类型。这个方法并没有利用到全天24小时的流量变化信息,所以感觉效果并不会太好。

  • 文献2

邬伦老师的文章(Wu-2018IJDE-landuse at Onedrive):
使用微博签到数据,引入遥感的混合像元分解的思想。
首先:得到不同类别土地利用类型的24h的“标准曲线”。在本文章中是采用微博数据直接label好的,统计全北京市各label的微博数据的均值)
其次,根据标准曲线,对全北京交通小区进行混合像元分解。
最后,计算功能分区混合度等指标。
有趣的亮点:混合度是随时间变化的(自己定义的)

2) 动态人口估算

  • 借助网格人口热力数据

这是联通公司自己的人口热力产品,每个格网对应的是人口数量,然后按照联通用户占所有手机客户的比例(大概30%多),进行一个扩样。
这是很好很好的数据,甚至可以说最大程度的反映了人口的动态分布情况。但正是因为这个数据太好,反而不知道该怎么改进。
但是我想单纯使用手机用户的数量是不能简单等同于人口数量的:

  1. 数据本身是利用基站采集,再归并到 250m 的格网尺度,这会导致一些问题:在一 些采集的范围内,或某一格网内,可能存在多种不同的土地利用类型。如学校区域的格网在 夜间也有相当数量的手机信号数据,这可能是学校区域周边的一些住宅楼内的人口活动信息 也被统计在内;另外,受基站密度的影响,不同区域的统计精度也有所不同。
  2. 手机信号数据较好的反映人口的日间活动信息,但是夜间由于手机使用人数的下 降,会存在一些偏差;
  3. 手机信号数据的多寡受区域的经济发展水平、手机使用率的影响较大。在一些区域,手机信号数据十分稀疏。因此单纯使 用手机信号数据获取的人口数量可能会有偏差。

正因为由以上几点,我才应该想办法结合遥感数据进行进一步的精进。

思路有下:

  • 直接借助手机信号数据的人口活动曲线,结合遥感数据估算的静态人口密度,进行划分。
  • 结合城市功能分区,进行不同功能单元的人口划分。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值