轨迹数据的格网化方法+个人小小的感悟

博客介绍了轨迹数据转化为OD数据后,如何通过格网化方法进行处理。首先生成格网对应字典,接着确定OD位置的格网号。然后,按照格网统计数据,分享了对数据整合和处理在研究中的重要性的感悟。强调了技术基础对实现研究想法的必要性,认为技术与想法同样重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前提是已经将轨迹数据处理为了OD数据。
在这里插入图片描述
如图,第1列是出租车ID,第2~4列分别是上车位置的时间戳、经纬度;第5到7列是下车位置的时间戳、经纬度。

一、生成格网对应的字典文件

根据数据以及格网大小,使用python手动划分格网,并生成字典文件。
第一列数字代表了格网左上角点的位置,第二列代表了格网号。
在这里插入图片描述
还有一个方法:用arcgis划分格网,然后导出属性表文件(含编号与位置坐标)。但是我发现好像只可以得到格网中心位置点的坐标。因此,要么后续的判别方法根据中心点来判断,要么再对坐标文件处理,将每一个中心点坐标调整为左上角坐标。

二、得到每一个OD位置对应的格网号

# coding: utf-8
import time
import shapefile
from shapely.geometry import Point
from shapely.geometry import Polygon
import pyproj
import csv


def time_stamp(time_s):
    time_trans = time.localtime(int(time_s))
    return time_trans.tm_mon, time_trans.tm_mday, time_trans.tm_hour

## 定义投影函数
def proj_trans(lon, lat):
    p1 = pyproj.Proj(init="epsg:4326")
    p2 = pyproj.Proj(init="epsg:32650")
    x1, y1 = p1(lon, lat)
    x2, y2 = pyproj.transform(p1, p2, x1, y1, radians=True)
    return x2, y2


# 1:格网字典生成
with open("C:/Users/lp/GPS-yechao//grid_dict.txt", "r") as f:
    grid = dict()
    for line in f.readlines():
        grid_info = line.rstrip("\n").split(",")
        grid[grid_info[0
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值