题目
输入某二叉树的前序遍历和中序遍历的结果,请重新构造出该二叉树。假设输入的前序遍历和中序遍历的结果中不包含重复的数字。例如输入的前序遍历序列为{1,2,4,7,3,5,6,8}和中序遍历为{4,7,2,1,5,3,6,8}。则重建出二叉树并输出它的头结点。
在二叉树的前序遍历序列中,第一个数字总是树的根节点的值。但在中序遍历中,根节点的值在序列的中间,左子树的结点的值位于根节点的值的左边,而右子树的结点的值位于根节点的值的右边。因此我们需要扫描中序遍历序列,才能找到根节点的值。
如图所示,前序遍历序列的第一个数字1就是根节点的值。扫描中序遍历序列,就能确定根节点的值的位置。根据中序遍历的特点,在根节点的值1前面3个数字都是左子树结点的值,位于1后面的数字都是右子树结点的值。
由于中序遍历序列中,有3个数字是左子树结点的值,因此左子树总共有3个左子结点。同样,在前序遍历的序列中,根节点后面的3个数字就是3个左子树结点的值,再后面的所有数字都是右子树结点的值。这样我们就在前序遍历和中序遍历两个序列中,分别找到了左右子树对应的子序列。
既然我们已经分别找到了左、右子树的前序遍历序列和中序遍历序列,我们可以用同样的方法分别去构建左右子树。也就是说,接下来的事情可以用递归的方法去完成。
代码
/**
* 二叉树
*
* @author: xuwenjie01
**/
public class BinaryTreeNode {
private int value;
private BinaryTreeNode left;
private BinaryTreeNode right;
public BinaryTreeNode(int value) {
this.value = value;
}
public int getValue() {
return value;
}
public void setValue(int value) {
this.value = value;
}
public BinaryTreeNode getLeft() {
return left;
}
public void setLeft(BinaryTreeNode left) {
this.left = left;
}
public BinaryTreeNode getRight() {
return right;
}
public void setRight(BinaryTreeNode right) {
this.right = right;
}
}
/**
* @author: xuwenjie01
**/
public class ReconstructedBinaryTree {
public static void main(String[] args) {
ReconstructedBinaryTree solution = new ReconstructedBinaryTree();
// 二叉树的先序序列
int[] preOrder = {1, 2, 4, 7, 3, 5, 6, 8};
// 二叉树的中序序列
int[] inOrder = {4, 7, 2, 1, 5, 3, 8, 6};
BinaryTreeNode root = solution.reconstructe(preOrder, inOrder);
solution.printPostOrder(root); // 后序打印二叉树
}
/**
* 根据前序和中序遍历序列完成二叉树的重建
*
* @param preOrder 前序遍历序列
* @param inOrder 中序遍历序列
*/
public BinaryTreeNode reconstructe(int[] preOrder, int[] inOrder) {
// 入参检查
if (preOrder == null || inOrder == null || preOrder.length == 0 || inOrder.length == 0
|| preOrder.length != inOrder.length) {
return null;
}
// 二叉树的根节点
BinaryTreeNode root = new BinaryTreeNode(preOrder[0]);
root.setLeft(null);
root.setRight(null);
// 左子树的个数
int leftNum = 0;
for (int i = 0; i < inOrder.length; i++) {
if (root.getValue() == inOrder[i]) {
break;
} else {
leftNum++;
}
}
// 右子树的个数
int rightNum = inOrder.length - 1 - leftNum;
// 重建左子树
if (leftNum > 0) {
//左子树的先序序列
int[] leftPreOrder = new int[leftNum];
//左子树的中序序列
int[] leftInOrder = new int[leftNum];
for (int i = 0; i < leftNum; i++) {
leftPreOrder[i] = preOrder[i + 1];
leftInOrder[i] = inOrder[i];
}
BinaryTreeNode leftRoot = reconstructe(leftPreOrder, leftInOrder); // 递归构建左子树
root.setLeft(leftRoot);
}
// 重构右子树
if (rightNum > 0) {
//右子树的先序序列
int[] rightPreOrder = new int[rightNum];
//右子树的中序序列
int[] rightInOrder = new int[rightNum];
for (int i = 0; i < rightNum; i++) {
rightPreOrder[i] = preOrder[leftNum + 1 + i];
rightInOrder[i] = inOrder[leftNum + 1 + i];
}
BinaryTreeNode rightRoot = reconstructe(rightPreOrder, rightInOrder); // 递归构建右子树
root.setRight(rightRoot);
}
return root;
}
/**
* 后序遍历二叉树(递归实现)
*/
public void printPostOrder(BinaryTreeNode root) {
if (root != null) {
printPostOrder(root.getLeft());
printPostOrder(root.getRight());
System.out.println(root.getValue());
}
}
}