自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(19)
  • 收藏
  • 关注

原创 伯努利数 + 自然数幂( Zoj2865 + 51Nod1228 + 51Nod1258 + 51Nod1822)

伯努利数定义: 将(B-1)^k展开 其中B^k作为伯努利数的第k项当k >= 2时 令(B - 1)^k = B^kB0 = 1然后我们计算前几项伯努利数然后我们通过伯努利数计算自然数幂...

2019-03-12 11:03:51 356 1

原创 Mac下 讲iphone备份到移动硬盘下

https://bbs.feng.com/read-htm-tid-11063540.html

2019-02-22 19:08:11 12318

原创 ZOJ - 2865 A very easy task

本文章学习于 acdreamers二项式定理: 这个题因为n太大了,所以用java大数写 在递归的时候 记忆化一下import java.math.*;import java.util.*;public class Main { public static final int N = 105; public static final BigIn...

2018-11-19 21:38:49 485

原创 HDU6266 - Hakase and Nano && 狄利克雷卷积

前置技能积性函数f(n) != 0 且 对于gcd(m, n) = 1f(mn) = f(m)f(n)则称该函数为积性函数 完全积性函数对于任意的f(mn) = f(m)f(n) , 则 f(n)为完全积性函数  欧拉函数欧拉函数是小于n的正整数中与n互质的数的数目(φ(1)=1) φ(p) = p-1φ(p^k) = p^k * (1 ...

2018-11-08 22:24:23 282

翻译 快速乘 (牛客 电音之王)

题目链接:https://ac.nowcoder.com/acm/contest/205/B 不会写。。。 记住板子吧。。#include<stdio.h>#include<iostream>#include<math.h>#include<assert.h>using namespace std;typedef long l...

2018-11-02 19:39:05 184

原创 HDU 5015 233 Matrix 矩阵快速幂

题意就是现在有一个矩阵a,矩阵的第一行和第一列(出了a[0][0]) 给你, 让你求a[n][m]第一行是 a[0][1] = 233 , a[0][2] = 2333 , a[0][i] = a[0][i-1] * 10 + 3a[i][j] = a[i-1][j] + a[i][j-1]看题目:应该是矩阵快速幂了举个例子:输入:3 123 47 16我们手推...

2018-10-01 19:45:12 158

原创 HDU5667 - Sequence 矩阵快速幂 + 费马小定理

f[1] = 1f[2] = a ^ b其实不是很好的去想到取log的 两边同时取log然后 F[2] = b  F[1] = 0则 f[n] = a^(F[n]) % p  费马小定理 : ① 判断素数,对于大素数的判定,Miller-Rabin 素数判定②求解逆元 ,设a模p的逆元为x,则a*x≡1(mod p) ,(a,p)=1;由费马小定理可以知道x=...

2018-09-30 16:40:49 226

原创 HDU 5950 Recursive sequence

T组数据, 每次给你 n A B 三个数字。f[1] = A  , f[2] = B  ,  f[n] = 2 * f[n-2] + f[n-1] + n^4 思路: 啊啊啊啊啊 矩阵快速幂 一定先要去构造单位矩阵 式子1 : f[i] = 2 * f[i - 2] + f[i - 1] + i ^ 4式子2 : f[i + 1] = 2 * f[i - 1] + f[i]...

2018-09-29 12:29:36 138

原创 CodeForces405B - Jzzhu and Sequences 矩阵快速幂

就是说:f1 = x;      f2 = y;  然后 f(i) = f(i-1) + f(i+1)化简一下式子:f(i+1) = f(i) - f(i-1)用i 替换 i+1, 则f(i) = f(i-1) - f(i-2)  这样就差不多可斐波那契的矩阵快速幂了 构造一个矩阵就是很裸的矩阵快速幂了 注意取膜啊阿啊阿啊阿啊#include <stdi...

2018-09-29 09:55:50 145

原创 51nod 1133 - 矩阵快速幂(模版) 快速乘 + 快速幂 + 矩阵快速幂

http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1113矩阵快速幂:首先前置技能:  快速幂 + 矩阵乘法。1  快速幂1.1 快速乘法题目:http://newoj.acmclub.cn/problems/20881.1.1引用自2009年国家集训队论文,骆可强:《论程序底层优化的一些方法与技...

2018-09-27 12:44:35 384

原创 米勒罗宾素数测试版-哥德巴赫猜想

#include <stdio.h>#include <iostream>#include <algorithm>#include <string.h>#include <math.h>#include <time.h>#include <queue>#include <stack&a

2018-09-26 15:34:03 248

原创 Codeforces1005E1 - Median on Segments (Permutations Edition)(中位数计数)

//// E1 - Median on Segments (Permutations Edition).cpp// CF// 谢谢大佬们分享思路// Created by Terry on 2018/7/11.// Copyright © 2018年 Terry. All rights reserved.//// n个数字 不重复 给你一个m// 然后问你有多少个区间...

2018-07-11 18:24:27 476

原创 CodeForces1005D - Polycarp and Div 3

题意: 给你一个字符串,然后让你尽可能多的去分解这个字符串 使得每一个分解出来的子串的和都是3的倍数思路: 同余对于单独的一个数字而言 如果是三的倍数 则 ans++否则 去考虑连续的两个数字  如果是 则 ans++否则 考虑连续的三个数字  如果第三个数字本身就是3的倍数  则ans++如果第三个数字不是3的倍数 那对于前两个数字x y 来说x y 对3求余只有两种情况 [1,1] [2,2]...

2018-07-10 21:58:47 525

原创 无向图判断欧拉回路

//// oula.cpp// 666//// Created by Terry on 2018/7/6.// Copyright © 2018年 Terry. All rights reserved.// 如果无向图连通并且所有结点的度都是偶数,则存在欧拉回路,否则不存在。 #include <iostream>#include <cstring&...

2018-07-06 19:20:45 1110 1

翻译 输入输出挂

bool Finish_read;template<class T> inline void read(T &x){ Finish_read = 0; x = 0; int f = 1; char ch = getchar(); while(!isdigit(ch)){ if(ch == '-'){ f = -1; } if(ch == EOF...

2018-06-23 10:12:15 234 1

原创 codeforce 985C Liebig's Barrels

emmmm... 做了半天 发现自己就是个大sb。题意: 给你n*k个木版,每次选择k个木版,组成n个桶,然后每个桶的体积V等于组成桶的k个木版中最短的那个木版。然后要求 V1 V2 V3 。。。Vn 任意两个做差的绝对值小于等于l如果没有满足条件的 输出0否则 输出 n个桶最大的体积和思路:首先,我们去判断能不能构成n个桶。 也就是说,我们这个时候不考虑体积和最大,将n*k个木板排序,我们现在要...

2018-05-27 20:40:59 294

原创 Deepin 安装CodeBlocks

设置root密码sudo passwd rootroot 输入之前设置的密码su rootgcc g++ 导入apt install gcc g++ make安装codeblcks相关依赖apt-get install python-software-propertiesapt-get install software-properties-common添加软件源sudo add-apt-repo...

2018-05-10 20:15:31 1328

原创 因子和,因子数,1到n的因子和,1到n的因子数

1 - 求n的因子和 因子和函数σ定义为整数n的所有正因子之和,记为σ(n)  它是一个积性函数 首先对n进行因子分解 (因子分解代码附后) n = p1^a1 * p2^a2 * ~~~ * px ^ ax σ(n) =((p1^(a1+1)-1)/(p1-1) * ((p2^(a2+1)-1)/(p2-1) * .... * ((pj^(aj+1)-1)/(pj-1)) = Π(j=1 -&g...

2018-04-26 19:39:26 3429

原创 LightOJ-1054 Efficient Pseudo Code

题意: 求n^m的因子和思路:对n进行素因子分解。n = p1^a1 * p2^a2 * .... * ps^asσ(n) = ((p1^(a1+1)-1)/(p1-1) * ((p2^(a2+1)-1)/(p2-1) * .... * ((pj^(aj+1)-1)/(pj-1)) = Π(j=1 -> s) (pj^(aj+1)-1)/(pj-1)    因子和函数σ定义为整数n的所有正因...

2018-02-20 19:07:24 355

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除