Compositional Oil Spill Detection Based on Object Detector and Adapted Segment Anything Model

Compositional Oil Spill Detection Based on Object Detector and Adapted Segment Anything Model

Motivation: Although these methods (Deep learning-based methods) provided reasonably good detection performance, they required accurately annotated segmentation samples for training, which is generally time-consuming and resource-intensive for building the dataset.

动机:深度学习方法需要准确注释的分割样本进行训练,而这通常需要耗费大量时间和资源来构建数据集。

做了什么:
为了减轻语义分割方法对大量精细注释样本的需求,我们提出了一个复合漏油检测框架 SAM-OIL,包括对象检测器(例如 YOLOv8)、适配的任意分割模型 (SAM) 和有序掩模融合 (OMF) 模块。

SAM 代表了自然图像分割领域的最新进展,它通过使用点、边界框、掩模和文本等输入提示提供令人印象深刻的零样本分割性能 [9]。在各种提示中,基于边界框的提示可产生最佳分割结果 [10],因此,我们将对象检测器与 SAM 集成用于漏油检测。YOLO 系列模型是对象检测中最有效的模型,因此我们选择最新的 YOLOv8 [11] 作为 SAMOIL 框架中的对象检测器。另一方面,SAM 的输出是与类别无关的二进制掩码,在合并掩码时可能会导致像素类别冲突。为了解决这个问题,我们提出了有序掩码融合 (OMF) 模块,该模块根据预定义的类别顺序合并掩码以提高最终准确率。

此外,直接将在自然图像上训练的 SAM 应用于遥感卫星图像并不能产生令人满意的结果 [10],尤其是对于具有模糊物体边界的 SAR 图像。为了弥补这一差距,SAM 需要专门针对漏油检测任务进行调整。HQ-SAM [12] 是 SAM 的最小改编,它通过添加不到 0.5% 的模型参数来提高 SAM 的分割精度。由于 HQ-SAM 的简单性和训练效率,我们将 HQ-SAM 中的适配器模块集成到 SAM-OIL 中,从而将 SAM 的分割能力转移到漏油检测任务。本研究的主要贡献总结如下。

我们提出了一种组合式漏油检测框架 SAM-OIL,它将先进的物体检测器(例如 YOLOv8)与 SAM 相结合。据我们所知,这是 SAM 首次应用于漏油检测。
提出了有序掩模融合 (OMF) 模块,这是一种无参数方法,可以有效解决 SAM 中的像素类别冲突。
我们将 HQ-SAM 的适配器模块引入到 SAM-OIL 中,该模块利用 M4D 数据集中的掩模来训练适配器,有效增强了 SAM 对边界模糊物体的分割能力。
• 实验结果表明,SAM-OIL 实现了 69.52% 的 mIoU,超越了现有的漏油检测方法,并且 OMF 和适配器都可以有效提高 SAM-OIL 的准确性。

在这里插入图片描述

A. 检测器给SAM提供prompt,即SAM的输入有两个原图和检测框作为prompt。

B. 有序掩模融合模块
有序掩模融合 (OMF) 模块旨在解决掩模融合中遇到的像素类别冲突。OMF 基于预定义的掩模顺序进行操作,其中模糊像素根据顺序进行分类,顺序对于 OMF 至关重要,如算法 1 中所述。例如,如果掩模顺序定义为“船舶、陆地、漏油、相似”,则分割结果中同时被标识为“船舶”和“陆地”的像素将被归类为“船舶”。

C. 自适应 SAM

我们采用 HQ-SAM [12] 作为自适应 SAM,因为它简单且训练效率高。HQ-SAM 最初是为了提高 SAM 对自然图像中复杂结构的分割精度而开发的,而本研究中使用的 HQ-SAM 旨在提高 SAM 对 SAR 图像中模糊边界的分割能力。HQ-SAM 是通过将 HQ-Output Token 和深浅特征的融合引入 SAM 而构建的。首先,设计一个可学习的 HQ-Output Token T H Q T_{HQ} THQ,将其与原始提示

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值