方差检验
方差检验是多变量t检验的延续,对于超过两个样本的对比检验就无法直接使用独立T检验了,这个时候就需要使用卡方检验。
- 涉及的名词
- 总平均值x均值hat
例子:冰淇凌老板想知道三种口味的冰淇凌的销售情况是否一样,他有如下的数据
巧克力味 | 草莓味 | 原味 |
---|---|---|
23 | 32 | 34 |
32 | 12 | 33 |
34 | 33 | 44 |
等 | 等 | 等 |
F检验又叫方差齐性检验,目的是判断两个样本的总体方差是否相等,计算双总体样本检验的前提条件。过程有点麻烦,涉及重点词汇:全部观测的均值x均值hat(不是总体均值),组均值,总平方和SST,组间因素平方和SSTR,组间因素平均平方和MSTR,组内残差平方和SSE,残差平均平方和MSE,最后才是计算F检验量,然后通过F检验量对假设检验和备择假设做出决策,F=MSTR/MSE ~ F(k-1,n-k) ,k是组数,n是所有观察值的个数
F检验其实就是方差分析,方差分析就是F分布的
F检验(F-test),最常用的别名叫做联合假设检验(英语:joint hypotheses test),此外也称方差比率检验、方差齐性检验。它是一种在零假设(null hypothesis, H0)之下,统计值服从F-分布的检验。其通常是用来分析用了超过一个参数的统计模型,以判断该模型中的全部或一部分参数是否适合用来估计母体。
什么是卡方检验
卡方检验就是检验两个变量之间有没有关系。
以运营为例:
卡方检验可以检验男性或者女性对线上买生鲜食品有没有区别;
不同城市级别的消费者对买SUV车有没有什么区别;
如果有显著区别的话,我们会考虑把这些变量放到模型或者分析里去
https://www.sohu.com/a/298044185_100103806