什么是方差检验,卡方检验,F检验的区别

方差检验

在这里插入图片描述
方差检验是多变量t检验的延续,对于超过两个样本的对比检验就无法直接使用独立T检验了,这个时候就需要使用卡方检验。

  • 涉及的名词
    • 总平均值x均值hat

例子:冰淇凌老板想知道三种口味的冰淇凌的销售情况是否一样,他有如下的数据

巧克力味草莓味原味
233234
321233
343344

F检验又叫方差齐性检验,目的是判断两个样本的总体方差是否相等,计算双总体样本检验的前提条件。过程有点麻烦,涉及重点词汇:全部观测的均值x均值hat(不是总体均值),组均值,总平方和SST组间因素平方和SSTR,组间因素平均平方和MSTR组内残差平方和SSE残差平均平方和MSE,最后才是计算F检验量,然后通过F检验量对假设检验和备择假设做出决策,F=MSTR/MSE ~ F(k-1,n-k) ,k是组数,n是所有观察值的个数

F检验其实就是方差分析,方差分析就是F分布的

F检验(F-test),最常用的别名叫做联合假设检验(英语:joint hypotheses test),此外也称方差比率检验、方差齐性检验。它是一种在零假设(null hypothesis, H0)之下,统计值服从F-分布的检验。其通常是用来分析用了超过一个参数的统计模型,以判断该模型中的全部或一部分参数是否适合用来估计母体。

什么是卡方检验

卡方检验就是检验两个变量之间有没有关系。
以运营为例:

卡方检验可以检验男性或者女性对线上买生鲜食品有没有区别;
不同城市级别的消费者对买SUV车有没有什么区别;
如果有显著区别的话,我们会考虑把这些变量放到模型或者分析里去
在这里插入图片描述

https://www.sohu.com/a/298044185_100103806

卡方检验(Chi-square test)、方差分析(Analysis of Variance,ANOVA)和t检验(Student's t-test)是统计学中常用的假设检验方法,用于确定一个或多个样本的均值或比例是否有显著差异。它们的区别如下: 1. 适用范围不同 t检验主要用于比较两个样本的均值是否有显著差异,例如比较两种治疗方法的效果。而方差分析则可以比较多个样本之间的均值是否有显著差异,例如比较三种不同品牌的产品的平均销售额是否有显著差异。卡方检验则用于比较不同分类变量之间是否存在显著关联,例如比较吸烟和肺癌之间的关联。 2. 检验的假设不同 t检验方差分析都是用于检验样本均值是否有显著差异,其假设检验都基于总体均值的差异。而卡方检验则是用于检验两个分类变量之间是否存在显著关联,其假设检验基于两个变量的频数分布是否独立。 3. 统计量不同 t检验的统计量是样本均值的差异,而方差分析则是F统计量,用于比较组内方差与组间方差的比值是否显著。卡方检验的统计量则是卡方值,表示观察频数与期望频数的差异程度。 4. 数据类型不同 t检验方差分析通常用于连续变量,而卡方检验则用于分类变量。 总之,这三种方法的应用范围、假设检验、统计量和数据类型都不同,需要根据具体问题的特点选择适当的方法进行分析。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值