309. 最佳买卖股票时机含冷冻期(leetcode/C++)

给定一个整数数组,其中第 i 个元素代表了第 i 天的股票价格 。​

设计一个算法计算出最大利润。在满足以下约束条件下,你可以尽可能地完成更多的交易(多次买卖一支股票):

  • 你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
  • 卖出股票后,你无法在第二天买入股票 (即冷冻期为 1 天)。

示例:

prices = [1, 2, 3, 0, 2]
maxProfit = 3
transactions = [buy, sell, cooldown, buy, sell]

这是leetcode中关于股票买卖系列中的一道medium题,对于我不简单啊,前前后后尝试三次,差不多花了十个小时有了吧,终于AC。说这些是想鼓励一下和我一样的渣渣。经过这道题终于体会到写出转移方程的重要性,不然做动态规划的题总是无头苍蝇。刚刚AC就是终于把转移方程找出来了。大家一定要想出当前状态与之前的那些状态相关。

profits[j]表示在第j天的收益,dp[i][j]表示第i天买第j天卖的收益。

第j天能够有几种状态大家要清楚,第一种是第j天卖出股票,第二种是第j天买入股票,第三种第j天处于冻结期或者无任何操作。

第一种是第j天卖出股票,则profits[j] = max{profits[j],dp[i][j]+profits[i-2]};

第二种是第j天买入股票,则profits[j] = max{profits[j],profits[j-2]};

第三种第j天处于冻结期或者无任何操作,则profits[j] = max{profits[j],profits[j-1]};

不知道这么写对不对,要是有问题,希望大家可以帮忙纠正。细节见代码:

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        if (prices.size() == 0 || prices.size() == 1)
        {
            return 0;
        }
        vector<vector<int> > dp;
        vector<int> profits(prices.size(), 0);
        for (int i = 0; i < prices.size(); i++)
        {
            dp.push_back(vector<int> ());
            for (int j = 0; j < prices.size(); j++)
            {
                dp[i].push_back(0);
            }
        }
        
        for (int i = 0; i < prices.size(); i++)
        {
            for (int j = i + 1; j < prices.size(); j++)
            {
                dp[i][j] = prices[j] - prices[i];
                if (dp[i][j] < 0)
                {
                    dp[i][j] = 0;
                }
            }
        }
        profits[1] = dp[0][1];
        
        for (int j = 1; j < prices.size(); j++)
        {
            if (j - 1 >= 0)
            {
                profits[j] = max(profits[j], profits[j - 1]);
            }
            if (j - 2 >= 0)
            {
                profits[j] = max(profits[j], profits[j - 2]);
            }
            for (int i = 0; i < j; i++)
            {
                profits[j] = max(profits[j], dp[i][j]);
                if (i - 2 >= 0)
                {
                    profits[j] = max(profits[j], dp[i][j] + profits[i - 2]);
                }
            }
        }
        return profits[prices.size() - 1];
    }
};


阅读更多

没有更多推荐了,返回首页