B+树索引

数据库为什么使用B+索引?
因为数据库中的数据存放在磁盘上,所以获取数据需要进行操盘IO,但是有一个非常严峻的问题,就是每次磁盘IO非常慢(9毫秒),如果每条数据都要进行IO,那查询效率将会非常低,所以需要进行优化。
根据计算机操作系统的设计可知,每次取数据是将该数据所在的存储页取出来放到内存(每个内存页4K或8k)。即每次IO取到的是一个存储页。
在这里插入图片描述
浅蓝色的块我们称之为一个磁盘块,可以看到每个磁盘块包含几个数据项(深蓝色所示)和指针(黄色所示),如磁盘块1包含数据项17和35,包含指针P1、P2、P3,P1表示小于17的磁盘块,P2表示在17和35之间的磁盘块,P3表示大于35的磁盘块。真实的数据存在于叶子节点即3、5、9、10、13、15、28、29、36、60、75、79、90、99。非叶子节点只存储真实的数据,只存储指引搜索方向的数据项(数据得到索引),如17、35并不真实存在于数据表中。
树的高度越高,那么需要的进行IO的磁盘块就越多(因为数据存在叶子节点,需要根据指针将磁盘块一块一块进行IO,知道找到要查数据所在的磁盘块),消耗的时间就越多,所以为了提高效率,就要减少IO磁盘块的个数,即减少树的高度,这就需要内层节点(磁盘块)全部用来存放索引,同时,索引字段你的字节要尽量小,因为每个磁盘块大小就这么大,要尽最大可能存放索引。

建索引的几大原则:

1.最左前缀匹配原则,非常重要的原则,mysql会一直向右匹配直到遇到范围查询(>、<、between、like)就停止匹配,比如a = 1 and b = 2 and c > 3 and d = 4 如果建立(a,b,c,d)顺序的索引,d是用不到索引的,如果建立(a,b,d,c)的索引则都可以用到,a,b,d的顺序可以任意调整。

  1. =和in可以乱序,比如a = 1 and b = 2 and c = 3 建立(a,b,c)索引可以任意顺序,mysql的查询优化器会帮你优化成索引可以识别的形式
3.尽量选择区分度高的列作为索引,区分度的公式是count(distinct col)/count(*),表示字段不重复的比例,比例越大我们扫描的记录数越少,唯一键的区分度是1,而一些状态、性别字段可能在大数据面前区分度就是0,那可能有人会问,这个比例有什么经验值吗?使用场景不同,这个值也很难确定,一般需要join的字段我们都要求是0.1以上,即平均1条扫描10条记录

4.索引列不能参与计算,保持列“干净”,比如from_unixtime(create_time) = ’2014-05-29’就不能使用到索引,原因很简单,b+树中存的都是数据表中的字段值,但进行检索时,需要把所有元素都应用函数才能比较,显然成本太大。所以语句应该写成create_time = unix_timestamp(’2014-05-29’);

5.尽量的扩展索引,不要新建索引。比如表中已经有a的索引,现在要加(a,b)的索引,那么只需要修改原来的索引即可

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值