大数据智能推荐系统原理介绍

推荐系统通过分析用户喜好进行个性化推荐,如基于流行度、好友推荐、人口统计学、内容和协同过滤。协同过滤分为用户和物品相似度计算,适用于不同场景。推荐系统在电商等领域发挥重要作用,需要持续优化以提升用户体验。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一.什么是推荐系统:

通过算法分析用户喜欢什么,再把那些分析出来用户会喜欢的东西推荐给用户。

二.为什么要用推荐系统:

主要有以下三点好处:
1.用户:得到想要的物品
2.平台:获得更多的流量和收入
3.内容提供商:提高售卖效率

据了解,亚马逊有20%~30%的销售来自于推荐系统。
大拿语录:
——杰夫.贝佐斯

三.我们该如何推荐:

刚刚说到是通过算法分析用户喜欢什么,那么都有哪些算法呢?是如何分析的呢?

主要可分为以下几点:
1.基于流行度的推荐
2.基于好友推荐
3.基于人口统计学的推荐
4.基于内容的推荐算法(content based—简称CB)
5.基于协同过滤的推荐算法(collaborative filtering—简称CF)
6.混合推荐机制

别被吓到,原理很简单,下面依次介绍:

1.基于流行度的推荐:

根据PV、UV、日均PV或收藏数、分享率等数据来按某种热度排序来推荐给用户。

优点:
简单,适用于刚注册的新用户,无用户“冷启动”问题。
缺点:
无法针对用户提供个性化推荐。
举个栗子:
在这里插入图片描述
基于这种算法可做一些优化:
比如加入用户分群的流行度排序,把热榜上的摇滚歌曲分给爱听摇滚的用户,把民谣热歌推荐给爱听民谣的用户。。。。

2.基于好友推荐:

把你好朋友
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值