一.什么是推荐系统:
通过算法分析用户喜欢什么,再把那些分析出来用户会喜欢的东西推荐给用户。
二.为什么要用推荐系统:
主要有以下三点好处:
1.用户:得到想要的物品
2.平台:获得更多的流量和收入
3.内容提供商:提高售卖效率
据了解,亚马逊有20%~30%的销售来自于推荐系统。
大拿语录:
——杰夫.贝佐斯
三.我们该如何推荐:
刚刚说到是通过算法分析用户喜欢什么,那么都有哪些算法呢?是如何分析的呢?
主要可分为以下几点:
1.基于流行度的推荐
2.基于好友推荐
3.基于人口统计学的推荐
4.基于内容的推荐算法(content based—简称CB)
5.基于协同过滤的推荐算法(collaborative filtering—简称CF)
6.混合推荐机制
别被吓到,原理很简单,下面依次介绍:
1.基于流行度的推荐:
根据PV、UV、日均PV或收藏数、分享率等数据来按某种热度排序来推荐给用户。
优点:
简单,适用于刚注册的新用户,无用户“冷启动”问题。
缺点:
无法针对用户提供个性化推荐。
举个栗子:
基于这种算法可做一些优化:
比如加入用户分群的流行度排序,把热榜上的摇滚歌曲分给爱听摇滚的用户,把民谣热歌推荐给爱听民谣的用户。。。。
2.基于好友推荐:
把你好朋友