描述
一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个 n 级的台阶总共有多少种跳法(先后次序不同算不同的结果)。
数据范围:0 \leq n \leq 400≤n≤40
要求:时间复杂度:O(n) ,空间复杂度: O(1)
解题
- 这样的话建议不要使用递归,因为如果target比较大的话,那么会递归非常多的层,导致程序无法运行
- 因此还是找清楚推导规律之后,创建一个数组,从左到右将结果存起来,这样会非常的省时间
- 这道题就是最经典的,斐波那契数列,f(n) = f(n-1) + f(n-2)
- f(0)、f(1)、f(2)除外
- 理解的话就是,N步可以拆分成下一步走1或者走2个台阶,把这两种可能加起来
import java.util.*;
public class Solution {
public int jumpFloor(int target) {
if (target == 0) {
return 0;
}
if (target == 1 || target == 2) {
return target == 1 ? 1 : 2;
}
int[] arr = new int[target + 1];
arr[0] = 0;
arr[1] = 1;
arr[2] = 2;
for (int i = 3; i < arr.length; i++) {
arr[i] = arr[i - 1] + arr[i - 2];
}
return arr[target];
}
}