Pandas常用方法

Pandas简介

Pandas是一个强大的分析结构化数据的工具集;它的使用基础是Numpy(提供高性能的矩阵运算);用于数据挖掘和数据分析,同时也提供数据清洗功能。

pandas大致分为三种数据结构:一维的Series、二维的DataFrame、以及三维的Panel。

本篇博客主要讲Series和DataFrame的基本用法。

Series

它是一种类似于一维数组的对象,是由一组数据(各种NumPy数据类型)以及一组与之相关的数据标签(即索引)组成。仅由一组数据也可产生简单的Series对象。

  • 创建

    s = pd.Series([1,2,3])
    t = pd.Series((1,2,3))
    # 加索引的series
    i = pd.Series([1,2,3], index=['a','b','c'])
    
    In [1]: s
    Out[1]: 
    0    1
    1    2
    2    3
    dtype: int64
    
    In [2]: t
    Out[2]: 
    0    1
    1    2
    2    3
    dtype: int64
    
    In [3]: i
    Out[3]: 
    a    1
    b    2
    c    3
    dtype: int64
    

    可以通过列表和数组直接创建Series,默认的索引(index)是从0开始的整数序列,我们也可以在创建的时候通过index参数指定索引数据。

  • 索引

    In [4]: i
    Out[4]: 
    a    1
    b    2
    c    3
    dtype: int64
    
    In [5]: i['a']
    Out[5]: 1
    
    In [6]: i[0]
    Out[6]: 1
    
    In [7]: i[0:2]
    Out[7]: 
    a    1
    b    2
    dtype: int64
    
  • 数据转换
    i.to_string(): 转化为字符串
    i.to_dict(): 转化为字典
    i.tolist(): 转化为列表
    i.to_json(): 转化为JSON
    i.to_frame(): 转化为DataFrame
    i.to_csv(): 存储为CSV文件格式

DataFrame

DataFrame是Pandas中的一个表格型的数据结构,包含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔型等),DataFrame即有行索引也有列索引,可以被看做是由Series组成的字典。

  • 创建
    除了从CSV等文件直接读取为DataFrame外,还可以通过字典的方式创建DataFrame
    d = {'1':[1,2,3],'2':[3,5,3],'3':[3,5,2]}
    df = pd.DataFrame(d)
    
    In [8]: df
    Out[8]: 
       1  2  3
    0  1  3  3
    1  2  5  5
    2  3  3  2
    
    
  • 行列索引
    1、对行索引
    In [9]: df.ix[0]
    Out[9]: 
    a    1
    b    3
    c    3
    Name: 0, dtype: int64
    
    2、对列索引
    In [10]: df.['3']
    Out[10]: 
    0    3
    1    5
    2    2
    Name: 3, dtype: int64
    
  • 数据转换
    与Series的数据转换方法一致,但是这里少了tolist,因为二维数据是不能直接转化为一维数据的。此外DataFrame添加了to_latex和to_excel等方法。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值