模型评估
评估模型的局限性
-
准确率(Accuracy):分类正确的样本占总样本个数的比例。
当不同类别的样本比例非常不均衡时,将准确率作为分类性能的指标非常局限,可以使用更加有效的平均准确率(每个类别下的样本准确率的算数平均)作为模型评估的指标。 -
精确率和召回率的权衡
- 精确率(Precision):分类正确的正样本个数占分类器判定为正样本个数的比例。
- 召回率(Recall):分类正确的正样本个数占真正的正样本个数的比例。
排序问题中,通常没有一个确定的阈值把得到的结果判定为正样本或负样本,而是采用Top N返回结果(即模型判定的N个正样本)计算Precision和Recall来衡量排序模型的性能。
Precision和Recall是即矛盾又统一的两个指标。为了提高Precision值,分类器需要尽量在更有把握时才把样本预测为正样本,但此时往往会因为过于保守而漏掉很多没有把握的正样本,导致Recall降低。
通常要绘制P-R曲线,单个点对应的精确率和召回率并不能全面地衡量模型的性能,画曲线能对模型进行更为全面的评估。 -
F1值和ROC曲线也能综合反映一个排序模型的性能。ROC曲线后面一节再说,F1值是精确率和召回率的调和均值。
F 1 = 2 × p r e c i s i o n × r e c a l l p r e c i s i o n + r e c a l l F_1 = \frac{2 \times precision \times recall}{precision + recall} F1=precision+recall2×precision×recall -
均方根误差RMSE(Root Mean Square Error)通常用来衡量回归模型的好坏,但是如果存在个别偏离程度特别大的离群点(Outlier),即使离群点非常少,也会让RMSE指标变的很差。
R M S E = ∑ i = 1 n ( y i − y i ^ ) 2 n RMSE = \sqrt{\frac{\sum\limits_{i=1}^n (y_i-\hat{y_i})^2}{n}} RMSE=ni=1∑n(yi−yi^)2
例如在流量预测问题中,噪声点是很容易产生的,甚至一些相关社交媒体突发事件带来的流量,都很有可能造成离群点。
针对离群点的解决方案有:- 如果认为这些离群点是“噪声点”的话,就需要在数据预处理的阶段将噪声点过滤掉。
- 如果不认为离群点是“噪声点”,就需要进一步提高模型的预测能力,将离群点产生的机制建模进去。
- 找一个更合适的指标来评估模型,如平均绝对百分比误差(Mean Absolute Percent Error,MAPE)。它将每个点的误差进行了归一化,降低了个别离群点带来的绝对误差的影响。
ROC曲线
-
ROC(Receiver Operating Characteristic Curve,受试者工作特征曲线),横坐标为假阳性率(False Positive Rate,FPR),纵坐标为真阳性率(True Positive Rate,TPR)。
F P R = F P N FPR = \frac{FP}{N} FPR=NFP
T P R = T P P TPR = \frac{TP}{P} TPR=PTP
其中N为真实的负样本个数,P为真实的正样本个数。
-
ROC曲线的绘制:二值分类问题中,模型的输出一般都是预测样本为正例的概率。我们需要制定一个阈值,概率大于该值则判为正例,小于该值判为负例,计算FPR和TPR,形成ROC曲线上的一点。通过不断移动截断点,则可绘制出ROC曲线。
-
AUC:ROC曲线下的面积(沿横轴积分),能够量化地反映基于ROC曲线衡量出的模型性能。
-
ROC曲线与P-R曲线:当正负样本的分布发生变化时,ROC曲线形状能保持基本不变,而P-R曲线形状一般会发生剧烈的变化。ROC曲线能更加稳定地反映模型本身的好坏,广泛应用于排序、推荐、广告等领域。如果希望更多地看到模型在特定数据集上的表现,P-R曲线能更直观地反映其性能。
余弦距离的应用
- 余弦相似度和余弦距离:余弦相似度取值范围为[-1,1],余弦距离是1减余弦相似度,取值范围为[0,2]。
- 余弦距离和欧式距离:
-
余弦距离关心的是向量的角度关系,并不关心它们的绝对大小。在文本、图像、视频领域,特征维度往往很高,余弦相似度在高维情况下依然能保持“相同为1,正交为0,相反为-1”。而欧式距离受维度影响,范围不固定,含义也比较模糊。
-
在一些场景,欧式距离和余弦距离有着单调的关系,如果选择距离最小(相似度最大)的近邻,则使用欧式距离和余弦距离的结果是相同的。
∣ ∣ A − B ∣ ∣ 2 = 2 ( 1 − c o s ( A , B ) ) ||A-B||_2 = \sqrt{2(1-cos(A,B))} ∣∣A−B∣∣2=2(1−cos(A,B))
其中 ∣ ∣ A − B ∣ ∣ 2 ||A-B||_2 ∣∣A−B∣∣2表示欧氏距离, c o s ( A , B ) cos(A,B) cos(A,B)表示余弦相似度,(1-cos(A,B))表示余弦距离。 -
总体来说,欧式距离体现数值上的绝对差异,余弦距离体现方向上的相对差异。
例如统计用户看剧行为,A为(0,1), B为(1,0),此时余弦距离较大,欧式距离较小,我们分析两个用户对不同视频的喜好,更关注相对差异,这里应该用余弦距离。
再例如分析用户活跃度,以登陆次数和平均观看时长为特征,A为(1,10), B为(10,100),则余弦距离会认为他们非常近,但这两个用户的活跃度差别是非常大的,应该选用欧式距离。
- 余弦距离并不是一个严格定义的距离。距离的定义是在一个集合中,每一对元素均可唯一确定一个实数,使得正定性、对称性、三角不等式成立,则该实数可称为这对元素的距离。余弦距离满足正定性和对称性,但不满足三角不等式。
在机器学习领域,被称为距离但不满足三条距离公理的还有KL距离(Kullback-Leibler Divergence),也叫做相对熵,常用于计算两个分布之间的差异,它不满足对称性和三角不等式。
要能证明三种距离公理
A/B测试的陷阱
-
在机器学习中A/B测试是验证模型最终效果的主要手段。
-
已经对模型进行充分的离线评估,还需要进行在线A/B测试的原因有:
- 离线评估无法完全消除模型过拟合的影响。
- 离线评估无法完全还原线上的工程环境。一般来讲,离线评估往往没有考虑线上环境的延迟、数据丢失、标签数据缺失等情况。也就是说,离线评估是理想工程环境下的结果。
- 离线评估一般是针对模型本身进行评估,线上系统的某些商业指标在离线评估中无法计算。如推荐问题中,离线评估关注ROC曲线、P-R曲线,而线上评估可以全面了解用户点击率、留存时长、PV访问量等变化。
-
如何进行线上A/B测试:主要手段是进行用户分桶,将用户分成实验组和对照组,对实验组用户用新模型,对对照组用户用旧模型。分桶要保证样本的独立性和采样方式的无偏性。
模型评估的方法
-
Holdout检验:最简单直接的检验方法,它将原始样本数据集随机划分成训练集和测试集。
缺点:验证集上计算出来的最后评估指标原始分组有很大关系。 -
交叉检验:为了消除Holdout的随机性,则有了交叉验证。
- k-fold交叉验证:将全部样本分成k个大小相等的样本子集,拿出其中一个子集作为验证集,其余k-1个子集作为训练集,依次遍历。通常把k次评估指标的平均值作为最终的评估指标。实际试验中,k经常取10。
- 留一验证:每次留下一个样本作为验证集,其余所有样本作为测试集,进行n次验证,再将评估指标求平均值得到最终的评估指标。(n个值的平均)
留一验证缺点:在样本总数较多的情况下,时间开销极大。留一验证是留验证的特例,但从个元素中选择个元素有种可能,时间开销比留一验证更多,在实际工程很少应用。
- 自助法:Holdout和交叉验证都是基于数据集的划分,但是当样本规模较小时,将样本集进行划分会让训练集进一步减小,可能影响模型的训练效果。自助法是基于自助采样的检验方法,对于总数为n的样本集合,有放回地随机抽样n次,得到大小为n的训练集。其中有的样本会重复,有的样本没有被抽出过,将没有被抽出的样本作为验证集进行验证,就是自助法的验证过程。当样本数很大时,大约有 1 / e = 36.8 % 1/e=36.8\% 1/e=36.8%的样本从来没有被采样过,这里的计算用到高数中的重要极限。
超参数调优
- 超参数搜索算法包括的几个要素:
- 目标函数,即算法需要最大化/最小化的目标。
- 搜索范围,一般通过上限和下限来确定。
- 算法的其他参数,如搜索步长。
- 超参数调优方法有:
-
网格搜索:最简单、应用最广泛的超参数搜索算法。通过查找搜索范围内所有的点来确定最优值。
优点:如果采用较大的搜索范围以及较小的步长,则很大概率能找到全局最优值。
缺点:十分消耗资源和时间,特别是需要调优的超参数比较多的时候。
实际应用中会先使用较大的搜索范围和较大的搜索步长,寻找全局最优值可能的位置,然后逐渐缩小搜索范围和步长来寻找更精确的最优值。优点是可以降低所需时间和计算量,缺点是目标函数一般是非凸的,可能会错过全局最优值。 -
随机搜索:随机搜索不再测试上界和下界之间的所有值,而是在搜索范围内随机选取样本点。其理论依据是,如果样本足够多,那么随机采样也能大概率找到全局最优值,或其近似值。
优点:比网格搜索快。
缺点:并不能保证找到全局最优值。
注:随机搜索有非常多种优化方法,如爬山算法、模拟退火(Simulated Annealing,SA)、遗传算法(Genetic Algorithm,GA)等。 -
贝叶斯优化算法:
网格搜索和随机搜索在测试新点时会忽略前一个点的信息,而贝叶斯优化算法充分利用了之前的信息,通过对目标函数形状进行学习,找到使目标函数向全局最优值提升的参数。
贝叶斯优化算法学习目标函数形状的方法:首先,根据先验分布,假设一个搜集函数;然后,每一次使用新的采样点来测试目标函数时,利用这个信息来更新目标函数的先验分布;最后,算法测试由后验分布给出全局最优值可能出现的位置。
优点:比网格搜索、随机搜索更高效。
缺点:贝叶斯优化算法一旦找到了一个局部最优值,会在该区域不断采样,很容易陷入局部最优。
为了弥补贝叶斯优化的的缺陷,需要在搜索和利用之间找到一个平衡点,“搜索”即是在未取样的区域获取采样点,“利用”则是根据后验分布在最可能出现全局最优值的区域进行采样。
过拟合与欠拟合
-
过拟合:模型对训练数据拟合过当。如模型过于复杂,把噪声数据的特征也学习到模型中,导致模型泛化能力下降。反映到评估指标上,就是模型在训练集上表现很好,但测试集和新数据上表现较差。
-
欠拟合:模型没有很好地捕捉到数据的特征,不能很好地拟合数据。反映到评估指标上,就是模型训练和预测表现都不好。
-
降低过拟合风险的方法:
- 从数据入手:获得更多的训练数据,更多的训练数据是解决过拟合最有效的手段。一般实验数据有限,可以通过一定的规则来扩充训练集,如图像分类中可以用数据增强,用GAN来合成大量的新训练数据。
- 降低模型复杂度。数据较少时,模型过于复杂是产生过拟合的主要因素,适当降低模型复杂度可以避免模型拟合过多的采样噪声。例如神经网络模型中减少网络层数、神经元个数等;决策树模型中降低树的深度、进行剪枝等。
- 正则化方法。给模型的参数加上一定的正则约束,例如将权值的大小加入到损失函数中,如L1/L2正则化。
集成学习方法。将多个模型集成在一起,来降低单一模型的过拟合风险,如Bagging方法。
- 降低欠拟合风险的方法:
- 添加新特征。当特征不足或者现有特征与样本标签的相关性不强时,模型容易出现欠拟合。通过挖掘“上下文特征”“ID类特征”“组合特征”等新特征,往往能取得更好的效果。在深度学习潮流中,有很多模型可以帮助完成特征工程,如因子分解机、梯度提升决策树、Deep-crossing等都可以成为丰富特征的方法。
- 增加模型复杂度。例如在线性模型中添加高次项,在神经网络模型中增加网络层数或神经元个数等。
- 减小正则化系数。正则化是用来防止过拟合的,但当模型出现欠拟合现象时,需要有针对性地减少正则化系数。