一、什么是Agent
AI Agent(人工智能代理)可以理解为一种“智能小帮手”。它就像一个能自己动脑子、会做事的机器人程序,只不过它不一定有实体,以软件形式部署于终端设备或云端的智能程序。
用生活例子解释:
假设你有一个“外卖小哥版AI Agent”:
- 它能自己思考:
接到送餐任务后,它会自己规划最快路线,而不是每一步都问你“左转还是直行”。
- 它会随机应变:
如果遇到堵车,它能立刻绕路;如果顾客电话打不通,它会发短信或等几分钟再试。
- 它有目标:
核心目标不是单纯执行命令,而是“把外卖准时送到”,为此它会主动解决路上各种问题。
和普通程序的区别:
- 普通程序如同电饭煲
:执行预设流程但缺乏应变能力,即使水烧干仍持续加热
- AI Agent
:像智能厨师,你说“做顿饭”,它会自己看冰箱里有什么菜、考虑你的口味、决定菜谱,发现没盐了还会下楼买。
生活中的AI Agent: - 手机里的智能助手(比如你问“明天穿什么?”,它会查天气、看你的日程安排再建议)
- 游戏里会配合你打怪的队友NPC
能自动比价、抢优惠券的购物助手
简单说,它就是有脑子、会主动解决问题的程序,不用你手把手教每一步,只要告诉它“要什么结果”,它自己会想办法搞定。
从上面的例子可以明显看出,AI Agent需要可以做到 「检索」「规划」「执行」image.png
二、Agent的设计理念
AI Agent = 大模型+计划+记忆+工具+行动

2.1反射(Reflection)
反射模式允许Al Agent审视自身生成的输出,并进行自我修正。
这种自我监督的能力使得AI能够在执行任务时不断优化策略, 提高准确性和效率。
例如,一个AI Agent 可能会生成一段代码,然后自我检查并修复潜在的错误,从而提升代码质量。
2.2工具使用(Tools Use)
工具使用模式是指Al Agent能够调用外部工具和API来增强自身的功能。
这种模式使得AI能够超越自身的知识库,通过与外部系统的交互来获取信息、执行操作或生成内容,极大地扩展了AI的应用范围和灵活性。
2.3规划(思维链)
规划模式赋予AI Agent将复杂任务分解为多个步骤并有序执行的能力。
通过这种方式,AI 能够更系统地处理问题,制定出有效的行动计划,并按照计划逐步推进任务完成。
这在需要长期思考和策略部署的任务中尤为重要,如市场分析或项目管理。
三、Agent落地方案
场景 | 技术方案 |
---|---|
快速验证需求(闭源) | 扣子、FastGPT、Dify等 |
可定制化开发 | MetaGPT、AutoGen等 |
专业AI应用开发 | LangChain、LangGraph等 |
四、实际案例
天气助手
直接使用大模型查询天气和天气AI Agent的区别


前置条件
使用高德开放平台获取天气信息
- 完成登录
- 新建应用
- 添加Key
获取Key
新建应用 添加Key 获取Key
提示词
你是一个天气查询助手,用户会向你询问有关天气的问题,当用户的问题涉及到具体的某一天时,你需要先调用时间工具获得用户问题所指的时间,然后再查询对应日期的天气
使用FastGPT实现天气助手
FastGPT没有现成的工具,所以我们需要使用插件+工作流来完成天气查询工具的创建
这个工具实质上就是一个http请求,对应的接口文档为:https://lbs.amap.com/api/webservice/guide/api/weatherinfo/#t1
从接口可以看出传入的city需要是城市编码:https://lbs.amap.com/api/webservice/download
将城市编码下载到本地后使用一个简单的脚本拿到数据
import json
import pandas as pd
df = pd.read_excel("/Users/Downloads/AMap_adcode_citycode.xlsx")
data_dict = df.set_index("中文名")["adcode"].to_dict()
json_data = json.dumps(data_dict, ensure_ascii=False)
print(json_data)
新建一个插件来获取天气


使用工作流创建Agent



使用Dify实现天气助手
https://agent-sit.qunhequnhe.com/


添加工具:由于我们的问题中可能会涉及到时间,所以除了获取天气的工具外,还需要获取时间的工具



使用LangGraph实现天气助手
from langchain_openai import ChatOpenAI
gpt4o_model = ChatOpenAI(
model="gpt-4o",
api_key="sk-xxx",
base_url="https://oneapi.qunhequnhe.com/v1"
)
import os
import requests
import pandas as pd
from langchain_core.tools import tool
from src.utils.constant import BASEDIR
@tool
def get_weather(city: str) -> str:
"""获取指定城市的天气信息"""
df = pd.read_excel(os.path.join(BASEDIR, "src", "tools", "AMap_adcode_citycode.xlsx"))
data_dict = df.set_index("中文名")["adcode"].to_dict()
url = f"https://restapi.amap.com/v3/weather/weatherInfo"
params = {
"key": "你的高德Key",
"city": data_dict.get(city),
}
response = requests.get(url, params=params)
if response.status_code == 200:
data = response.json()
return data
else:
return "获取天气失败"
from langgraph.prebuilt import create_react_agent
from src.tools.get_weather import get_weather
from src.utils.models import gpt4o_model
agent = create_react_agent(
model=gpt4o_model.bind_tools([get_weather]),
tools=[get_weather]
)
result = agent.invoke({"messages": [
{"content": "你是一个天气查询助手,用户会向你询问有关天气的问题,当用户的问题涉及到具体的某一天时,你需要先调用时间工具获得用户问题所指的时间,然后再查询对应日期的天气", "role": "system"},
{"content": "杭州市和北京市今天哪边更热", "role": "user"}
]})
print(result['messages'][-1].content)
小结
通过天气助手的完整实现案例,我们可以总结出AI Agent落地的三个关键要素:
- 认知架构设计
- 融合LLM的语义理解与符号系统的精确执行
- 实现「感知-决策-行动」的闭环工作流
- 工具生态集成
- API调用需考虑:鉴权机制、限流策略、错误重试
- 工具描述应包含:功能说明、输入输出格式、使用示例
- 工程化实践路径
- 低代码平台(如Dify)适合快速原型验证
- 开发框架(如LangGraph)支持复杂Agent编排