自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(7)
  • 收藏
  • 关注

原创 推荐系统的一些事情

推荐系统的一些事情  推荐系统本质上就是为了从海量的信息里找到用户的喜欢的内容/商品,帮助用户进行内容浏览等等。然而干这事儿大部分时候都是为了钱!!!例如,推荐场景下是为了让人去买或者把时间花在这破app上,搜索场景下是为了让人的体验变好,从而获得更多流量、给商品给多的曝光等。简介   如上图,...

2020-08-26 10:30:50 147

原创 强化学习的一点点记录和Base

强化学习基础知识零. 简介   监督学习方法通过标注数据来对问题进行建模乃至拟合,进而学习到一个/多个映射函数fff,并用fff进行预测。而强化学习方法一般来说并不强制需要一些“Ground Truth”,侧重于让智能体(agent)在环境中进行探索,从而学习环境中在某种评价机制下受益/奖赏最大的行为模式(俗称,“策略”,policy,也可以理解为一个从状态到动作的映射)。一. 马尔可夫决策过程   在与环境的不断探索中,agent需要不断的作出一系列的决策,从而获取长期/最大的收益或者收益累积。

2020-08-24 23:44:15 234

原创 大规模训练的一些奇技淫巧(torch)

大规模训练的一些奇技淫巧1. 分布式训练1.1 数据并行   数据并行是指,通过将将模型(整个)在不同的设备部署多个副本,每个设备可以处理不同的batch,那么整体而言,我们就增大了训练时数据的吞吐量。从而加速了训练:1.2 模型并行   对不起,我没用过这么大的模型。。。但是,基本思路就是你在一个device算完模型的一部分之后,在to到另一个device就行了,参考下面:2. torch里的一些奇技淫巧   在torch里进行dataParallel, 我们大概来说有两个接口可以

2020-08-23 15:33:12 359 1

原创 二、attention 机制的用户序列建模

二、attention 机制的用户序列建模2. Deep Interest Evolution Network2.1 简介在这篇文章发布之前的CTR预估或者推荐排序算法中,都将做用户的行为序列表征进行池化或者attention机制加权平均作为用户兴趣的表征,直接使用用户的行为序列信息作为用户兴趣,没有考虑用户的潜在兴趣的特征。此外,这种办法的用户特征表征,也没有考虑用户的兴趣是处于一个u 段发展的状态,而不是固定一成不变的。这篇文章的作者,与其他的工作直接采用用户的行为序列作为兴趣表征不同,作者建立

2020-08-23 00:46:54 495

原创 attention方式的算法

二、attention方式的算法1. Deep Interest Network1.1 简介《Deep Interest Network for Click-Through Rate Prediction》;在这篇文章提出来的时候,大部分的基于DNN的CTR预估算法都采用如下的套路:a. 首先,将稀疏的高维用户/item特征映射到低维稠密的embedding,然后分组把这些embedding 映射到一组定长的表征向量,然后把这些向量concat起来,然后经过多层的NN,来学习各类特征的交叉特征得到用户

2020-08-22 22:18:51 679

原创 机器/深度学习的总结和备份

先立flag1. 强化学习部分1.1 多智能体强化学习2.1 单智能体强化学习2. 自然语言处理2.1 预训练模型2.2 注意力机制2.3 序列标注2.4 NLP里的小样本学习3. 推荐系统相关3.1 Graph-Based Embedding3.2 搜索算法3.3 匹配/召回常见算法3.4 排序:粗拍/精排算法3.5 用户序列建模...

2020-08-22 17:42:47 106

原创 用户序列建模方法总结

用户序列建模方法摘要: 推荐系统可用特征可以归类:内容

2020-08-22 15:53:11 1321

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除