EM算法-机器学习中的隐变量估计利器

今天我们来谈谈业内地位很高,应用范围极广,非常好用的EM算法。

本文面向对象是热爱机器学习并渴望深入研究的小伙伴们,文章风格多以数学推导为主,每一步推导都会附带笔者自己的理解,希望大家在和笔者共同研究的过程中,一起感受数学的严谨和美~

首先,说起机器学习,不得不说一下周志华老师的西瓜书,可以说这本书是我机器学习启蒙的第一本书。今天讲EM算法,我们先简要看一下西瓜书的定义:

EM

上述是西瓜书里面对于EM的全部解释,非常简洁,基本没有数学推导,只是解释了E步基于参数 \theta^t 对于隐变量Z的对数似然数学期望估计。解释了M步寻找参数最大化的似然估计。

看到这里,小伙伴们可能一脸懵逼。

就这样???

好吧,不要伤心,今天我们就从数学上一点点带大家走进EM,把问号一点点消除。

在此之前,实际上西瓜书在倒数第二段说的很好:

倒数第二段

这实际上可以理解成我们在业内常说的“鸡生蛋,蛋生鸡”问题。即根据数据标签(data label)去生成在这种标签下最优模型,将模型因应用在刚才的数据上去重新生成在这种模型下的数据标签,然后用新生成的标签去重新估计模型,直到收敛,即模型和标签最终保持一致。但我们可以看到这种过程无法保证能让模型收敛到全局最优,所以EM可以收敛到局部最优解。在这里我们一定要注意,对于一般数据,如果每一个数据都有明确标签,那么EM算法是没有意义的,直接去用极大似然估计模型就好了,而一般的,我们是有一些数据有标签,一些数据没有标签,那么如何利用这些没有标签的数据去最好的估计我们的模型呢,在这里,EM算法有了它的数学魅力,所以我们可以看出EM多用于半监督学习(semi-supervise-learning)之中。

好了废话不多说,我们进入算法:

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值