【python机器学习】中文情感分析

本文介绍了使用Python进行中文情感分析的实践,包括数据预处理、snownlp库的应用、朴素贝叶斯模型的训练,以及分词、特征提取等步骤。通过对大众点评评论数据的情感标注和模型训练,展示了情感分析的过程。
摘要由CSDN通过智能技术生成

3月31日,3月最后的一天接到了腾讯HR终面,看着招聘官网变成已完成还有点小自豪呢

然后百度搜了搜显示“已完成”是不是稳了,原来不是,好多最后被通知没被录取。。。。

随缘吧~代码还要继续码,博客还要继续更,论文还要继续写。。。。。

数据源

公众号文章:Python有趣|中文文本情感分析
罗罗攀在里面有发数据,大家以后可以跟着他的公众号进行学习,非常适合我这种小白哈哈哈哈哈哈
这是大众点评上的评论数据(王树义老师提供)

原始数据

import pandas as pd
import csv
import numpy as np
data = pd.read_csv(r'C:\Users\xuxiaojielucky_i\Desktop\data1.csv',encoding='utf-8')
data.head()

在这里插入图片描述

情感分析——分类

可以看到数据中有一列是平分(star)数据,我们看先这个数据有哪些分值。可以看到分值有1,2,4,5四中等级。

data['star'].unique()

在这里插入图片描述
对数据进行标注,我们假定分数小于3的为消极并标注为0,大于3的分数为积极并标注为1,通过1和0 对数据进行分类,因此我们定义一个函数,用apply方法得到一个新的列(分类的列)。

def make_label(star):
    if star > 3:
        return 1
    else:
        return 0
data['setiment'] = data.star.apply(make_label)        
data.head()

在这里插入图片描述

snownlp

python最强大的地方就是第三方库,其实有现成的库可以直接对文本进行情感分析,如snownlp,直接调用返回的是积极情绪的概率,我们来调用一下吧~
在这里插入图片描述

import snownlp
text1 = '我的卷发棒在哪?'
text2 = '
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值