方向导数和梯度

全微分: dz=A\bigtriangleupx+B\bigtriangleupy

微积分这门学科的基本思想:“以直代曲,线性逼近”

 

对积分理解最好的文章

https://blog.csdn.net/u013066730/article/details/83151829

 

当我们无限增加切线的时候,我们就需要用无限的加法,这就是积分(这个符号本身就是源于把英文Sum的首字母拉长):

这是最基本的不定积分,我们可以把这个式子解读为,把所有的 即微分加起来就得到了曲线。这就是“以直代曲”。

为什么有一个常数C呢?

为什么要“以直代曲”?我觉得答案很显然,因为直线研究起来更简单啊。

 

  • 微分得是“直”的(这样才能“代曲”),一元是直线,二元只能是平面

  • 微分和切线有关,一元微分就是切线,二元的情况要复杂一些

关于二元的切线,我们先要理解一点,在三维曲面上的点有无数条切线:

有了这些信息之后,我们就能很轻松的把一元微分推广到二元微分上去。

二元微分就是所有的切线都存在,并且都在一个平面。如果这样一个平面存在的话,它就是二元的微分,我们也叫它为“切平面”。这个微分可以提供对曲面很好的“线性近似”。

全微分于某点存在的充分条件 函数在该点的某邻域内存在所有偏导数且所有偏导数于此点连续
全微分于某点存在的必要条件 该点处所有方向导数存在(还有函数于该点连续等一堆显然的推论)
全微分于某点存在的充要条件 对于二元函数事实上就是其几何意义 用的不多 只是加深理解的作用
还有一个充要关系 即线性微分式dz=M(x,y)dx+N(x,y)dy是全微分的充要条件为 M对x的偏导数=N对y的偏导数 这个关系似乎也曾被称为全微分条件 现在一般叫倒易关系或者Euler倒易关系

 

方向导数
定义导数、偏导数、方向导数都是说如果说某条件下极限存在,谨记导数的本质是极限及代表函数的变化率,偏导数反映的是函数沿坐标轴方向的变化率,有所限制,所以引入方向导数表示沿任意一方向的变化率
定义:设lll是xOyxOyxOy平面以P0(x0,y0)P_0(x_0,y_0)P 
0
https://blog.csdn.net/czmacd/article/details/81178650

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值