Python的优势
Python是一门解释型语言,是比较容易入门。
Python的程序代码更接近英语,更好好理解。
Python的扩展库非常丰富。
Python与C的粘合性非常好。
Python的缺点
Python的执行效率相比与C、C++相对较慢
Python的应用领域
数据分析与处理
通常情况下,Python被用来做数据分析。用C设计一些底层的算法进行封装,然后用Python进行调用。因为算法模块较为固定,所以用Python直接进行调用,方便且灵活,可以根据数据分析与统计的需要灵活使用。Python也是一个比较完善的数据分析生态系统,其中matplotlib经常会被用来绘制数据图表,它是一个2D绘图工具,有着良好的跨平台交互特性。日常做描述统计用到的直方图、散点图、条形图等都会用到它,几行代码即可出图。我们日常看到的K线图、月线图也可用matplotlib绘制。如果在证券行业做数据分析,Python是必不可少的。
再如Pandas也是Python在做数据分析时常用的数据分析包,也是很好用的开源工具。Pandas可对较为复杂的二维或三维数组进行计算,同时还可以处理关系型数据库中的数据,和R语言相比,data.frame计算的范围要远远小于Pandas中的DataFrame的范围,这也从另一个侧面说明Python的数据分析功能要强于R。
除以上两点之外,SciPy还可有解决很多科学计算的问题,比如微分方程、矩阵解析、概率分布等数学问题。
Web开发应用
Python是Web开发的主流语言,但不能说是最好的语言。同样是解释型语言的JavaScript,在Web开发中应用的已经较为广泛,原因是其有一套成熟的框架。但Python也具有独特的优势。比如Python相比于JS、PHP在语言层面较为完备,而且对于同一个开发需求能够提供多种方案。库的内容丰富,使用方便。Python在Web方面也有自己的框架,如django和flask等。可以说用Python开发的Web项目小而精,支持最新的XML技术,而且数据处理的功能较为强大。
人工智能应用
在人工智能的应用方面,笔者认为还是得益于Python强大而丰富的库以及数据分析能力。比如说在神经网络、深度学习方面,Python都能够找到比较成熟的包来加以调用。而且Python是面向对象的动态语言,且适用于科学计算,这就使得Python在人工智能方面备受青睐。虽然人工智能程序不限于Python,但依旧为Python提供了大量的API,这也正是因为Python当中包含着较多的适用于人工智能的模块,比如sklearn模块等等。调用方便、科学计算功能强大依旧是Python在AI领域最强大的竞争力。