Python的学习,知识涵盖极为广泛,对不同应用目标的学习,进阶的路线有很大的差异,下面由小博,也就是我!给大家带来了干货知识点。有什么问题可以交流~
分别从常见的测试运维,大数据处理,金融分析,机器学习,视窗编程五大方向进行介绍并推荐学习路线:
测试运维应用方向
1、Python基础学习
(1)Python语句
学习python的运算符和表达式,声明语句,基本的输入输出语句、注释语句、流程控制语句
(2)函数、模块和包
函数的定义和使用,模块的导入,多模块和包声明
(3)数据结构
元组,列表,字典,集合的抽象与使用
2、Python进阶学习
(1)面向对象
类定义、对象的构建和实例化、子类继承和方法重写、异常类的使用
(2)正则表达
字符串匹配和过滤,数据的搜寻和识别
(3)文件操作
文件和目录的新建与查找,文件内容的读取与写入
3、Python高级学习
(1)scrapy框架
网络数据爬虫框架,用于获取免费的网络大数据
(2)Django框架
Web网站服务框架,用于快速构建带数据库的web网站
(3)selenium框架
Web自动化模拟和测试框架,用于模拟用户的浏览器操作
大数据处理方向
1、Python基础学习
(1)Python语句
学习python的运算符和表达式,声明语句,基本的输入输出语句、注释语句、流程控制语句
(2)函数、模块和包
函数的定义和使用,模块的导入,多模块和包声明
(3)数据结构
元组,列表,字典,集合的抽象与使用
(4)面向对象
类定义、对象的构建和实例化、子类继承和方法重写、异常类的使用
(5)正则表达
字符串匹配和过滤,数据的搜寻和识别
(6)文件操作
文件和目录的新建与查找,文件内容的读取与写入
2、大数据进阶学习
(1)Linux系统及网络服务
Linux操作系统命令行环境,网络服务配置
MapReduce和HDFSGoogleHadoop的概念,Hive数据仓库操作,HBase存储设计,Pig计算,Sqoop数据迁移,Oozie、Azkaban工作流
Spark大数据处理Spark的特点与应用场景,PythonSpark程序开发,GraphX架构
3、大数据高级学习
(1)SparkMLlib与机器学习
机器学习分类及算法,MLlib算法库
(2)Storm实时开发框架
Storm的开发环境与生产环境,拓扑与流分组,spout和bolt类
(3)Storm的辅助框架
Zookeeper分布式服务框架,storm-starter项目管理,trident实时计算抽象
(4)大数据架构设计
flume数据采集+kafka数据缓冲接入+storm流式计算+mysql分析结果持久化存储
金融分析方向
1、Python基础学习
(1)Python语句
学习python的运算符和表达式,声明语句,基本的输入输出语句、注释语句、流程控制语句
(2)函数、模块和包
函数的定义和使用,模块的导入,多模块和包声明
(3)数据结构
元组,列表,字典,集合的抽象与使用
(4)面向对象
类定义、对象的构建和实例化、子类继承和方法重写、异常类的使用
(5)正则表达
字符串匹配和过滤,数据的搜寻和识别
(6)文件操作
文件和目录的新建与查找,文件内容的读取与写入
2、数据分析进阶学习
(1)Numpy数据结构
Numpy数组,结构数组,内存分配
(2)Matplotlib数据可视化
二维数据集,二维绘图,金融绘图,3D绘图
(3)Pandas基础
DataFrame类,Series类,GroupBy操作
(4)金融时序分析
基于Pandas的金融数据基本分析技术,数据回归分析,高频金融数据分析
(5)数据I/O操作
使用Pandas进行sql数据库读写,CSV文件读写,pythonExcel操作
3、数据分析高级学习
(1)数学工具学习
回归近似,插值近似,凸优化(全局最优,局部最优,约束最优),数值积分,模拟积分,符号计算
(2)随机分析
随机数,模拟随机变量和随机过程,方差缩小技术,欧式期权估值,美式期权估值,风险测度指标
(3)统计分析
正态性检验,资产组合优化,主要成分分析,贝叶斯回归分析
(4)数值分析
LU分解,QR分解,Jacobi方法,Gauss-Seidel方法,隐含波动率,Markovregime-switching模型,门限自回归模型,平稳转换模型,求根方法
(5)Python效率优化
Python运行效率分析,并行计算,动态编译技术,Cython静态编译,基于GPU的随机数生成
机器学习方向
1、Python基础学习
(1)Python语句
学习python的运算符和表达式,声明语句,基本的输入输出语句、注释语句、流程控制语句
(2)函数、模块和包
函数的定义和使用,模块的导入,多模块和包声明
(3)数据结构
元组,列表,字典,集合的抽象与使用
(4)面向对象
类定义、对象的构建和实例化、子类继承和方法重写、异常类的使用
(5)正则表达
字符串匹配和过滤,数据的搜寻和识别
(6)文件操作
文件和目录的新建与查找,文件内容的读取与写入
2、机器学习进阶学习
Numpy和Scipy基础Numpy数组,结构数组,Scipy科学计算库,iPython编辑器
(1)Matplotlib数据可视化
二维数据集,二维绘图,决策树绘制,seaborn库
(2)Pandas基础
DataFrame类,Series类,时间序列生成
3、机器学习高级学习
(1)数学工具
简单线性回归,岭回归,LASSO回归,Logistic回归,SVM向量机
(2)神经网络
感知机学习,BP算法,CNN卷积神经网络,CCPP数据集
(3)分类模型
K-means,EM,朴素贝叶斯,贝叶斯网络,HMM模型,卡尔曼滤波
(4)pythonScikit-learn框架
TensorFlow框架,Theano框架,caffe框架,Keras框架
视窗编程方向
1、Python基础学习
(1)Python语句
学习python的运算符和表达式,声明语句,基本的输入输出语句、注释语句、流程控制语句
(2)函数、模块和包
函数的定义和使用,模块的导入,多模块和包声明
(3)数据结构
元组,列表,字典,集合的抽象与使用
(4)面向对象
类定义、对象的构建和实例化、子类继承和方法重写、异常类的使用
(5)文件操作
文件和目录的新建与查找,文件内容的读取与写入
2、视窗编程进阶学习
(1)TkinterTk工具集
Tkinter.Tk视窗对象,Tkinter的主要控件(Button,Canvas,Checkbutton,Entry,Frame,Label,Listbox,Menu,Scrollbar等),控件的标准属性,几何布局管理
(2)PyQtGUI工具集
QTDesigner界面设计器,PyQt4的各种控件,Pyside商业开放框架
(3)wxPython框架
wxWidgetsGUI工具库,wxPython的常用控件(menu菜单,页面布局Sizer,Tab页面notebook,列表控件ListCtrl,文件选择对话框FileDialog,目录选择对话框DirDialog等)
3、视窗编程高级学习
(1)数据库通讯
PostgreSQL数据库,MySQL数据库
(2)网络通讯
socket编程,urllib及urllib2网络库,requests网络库,文件传输ftplib,邮件发送smtplib
(3)工程管理
PyInstaller打包,py2exe编译,git版本管理,PyPI发布,Fabric自动化部署
如果想进阶Python全栈的,想知道python难不难学?到底python全栈测试开发都在学什么?可以观看b站的视频>>
也可以保存以下知识图谱哦
希望给我留言哦~