python在财务中的应用实训报告-数据科学与大数据技术专业实训解决方案

第一章 大数据发展背景

1.1 国家政策

 2017年1月

工业和信息化部正式发布了《大数据产业发展规划(2016-2020年)》,明确了“十三五”时期大数据产业的发展思路、原则和目标,将引导大数据产业持续健康发展,有力支撑制造强国和网络强国建设。

 2018年9月

工信部公示“2018年大数据产业发展试点示范项目名单”,公布了包括大数据存储管理、大数据分析挖掘、大数据安全保障、产业创新大数据应用、跨行业大数据融合应用、民生服务大数据应用、大数据测试评估、大数据重点标准研制及应用、政务数据共享开放平台及公共数据共享开放平台等10个方向200个项目。

 2019年11月

为进一步落实《国务院关于印发促进大数据发展行动纲要的通知》和《大数据产业发展规划(2016~2020年)》,推进实施国家大数据战略,务实推动大数据技术、产业创新发展,我国工业和信息化部将组织开展2020年大数据产业发展试点示范项目申报工作。

1.2 行业现状

据相关资料显示,随着互联网、移动互联网、物联网等信息通信技术及产业的不断发展,全球数据量呈爆发式增长态势。至此,IDC研究报告指出,根据ZDNET的统计预计到2020年,中国产生的数据总量将超过8.5ZB,是2013年的10倍。

此外,值得一提的是,大数据市场空间巨大的同时,其产业规模也有望迎来快速增长。据前瞻产业研究院发布的《中国大数据产业发展前景与投资战略规划分析报告》统计数据显示,2015年我国大数据产业规模已达2800亿元,截止至2017年我国大数据产业规模增长至4700亿元,规模增速进一步提高至30.6%,初步测算2018年我国大数据产业规模将达6200亿元左右,同比增长31.9%。并预测在2020年我国大数据产业规模增长突破万亿元,达到了10100亿元,同比增长26.3%。

2015-2020年我国大数据产业规模统计及增长情况预测

数据来源:前瞻产业研究院整理

由此可知,随着来自政策、技术以及市场等各方面的力量推进之下,大数据产业的发展潜力绝不能小觑。对此,业内人士还预期称,我国大数据产业正在从起步阶段步入黄金期,2020年中国有望成世界第一数据资源大国。

1.3 专业背景

大数据及相关专业是以计算机为基础,以挖掘、分析为主,以搭建、工具使用为辅,紧密面向行业应用的一门综合性学科。其方向有数据科学与大数据技术、概率论与数理统计、数据挖掘与数据分析、数据运维与开发、算法与数据结构、计算机网络、并行计算等多个专业方向。目前全国各类院校已陆续开始围绕大数据专业建设展开研究并申报大数据专业。

2016年,教育部批准北京大学、对外经贸大学、中南大学率先开设“数据科学与大数据技术”专业;2017年,教育部批准包括中国人民大学、北京邮电大学、复旦大学在内的共计32所高校获批“数据科学与大数据技术专业”;2018年3月,教育部发布《2017年度普通高等学校本科专业备案和审批结果》,共计255所高校获批开设“数据科学与大数据技术专业”及“大数据管理与应用专业”;2019年3月,教育部发布《2018年度普通高等学校本科专业备案和审批结果》,共计228所高校获批开设“数据科学与大数据技术专业” 及“大数据管理与应用专业”。

“大数据技术与应用”专业是2016年教育部公布的新增专业。2017年共有62所职业院校获批“大数据技术与应用”专业,2018年共有148所职业院校获批“大数据技术与应用”专业,2019年度新增195所高职院校获批“大数据技术与应用”专业。截止目前,总计405所高职院校成功申请该专业。

第二章 教学平台

红亚大数据教学平台基于高校的教学场景,运用云计算技术,集课程实验、算法实战、数据科研、考试于一体的实训平台,平台课程共计800多个任务。学生可通过浏览器访问使用,可在学校任何一个网络可达的场所进行学习。

系统课程学习模式包括实验平台、项目路径和职业路径,满足不同场景的教学需求。在教学管理方面,平台自带人工智能课程推荐功能,可为学生提供个性化课程推荐及AI课程助手,助力学生定向就业。还可以通过大数据分析,自动生成学业报告,为学生就业提供桥梁,并作为教师教学的得力助手,为高校的学生能力培养及教师的工作提供强有力的支持。

2.1 学习模式

2.1.1 实验平台

该模式以知识体系为核心,将大数据内容按照不同类型的知识模块进行分类。如大数据基础体系下包含了:Linux基础、编程基础、数学基础、数据库基础等课程;大数据进阶体系包含了:Hadoop、Spark数据处理、R语言、Python数据处理、SAS数据分析等课程;该模式围绕一个内容展开了多方面知识的学习,与现在教育方式一致,保留了师生们传统的学习授课方法。不仅如此,为满足学校的已有的课程教学资源,老师可以自定义实验内容及实验镜像,将文本类、实操类、视频类课件上传到教学平台上满足教学需求。

2.1.2 职业路径

该模式以职业岗位需求为核心,综合分析国内众多企业的大数据相关人才岗位需求,如大数据运维工程师、大数据研发工程师、大数据架构工程师,经过采集、筛选、对比、定模等一系列的流程,将岗位技能需求落实到具体的知识点,围绕一个岗位展开多方面相关技术的学习。

教师在后台可以将实验按照所需知识点的难易程度设计成一套流程体系。学生按照流程开始实验,将每一模块的技能牢牢掌握后,到最后具备胜任该职业的能力,可为自身职业发展提供有效帮助。

2.1.3 项目路径

项目路径学习模式是以还原企业的真实项目完成过程为设计思路,将大数据技能知识点与实际项目案例相结合,让学生能够真实的体会到每个知识点在实际项目中的具体作用。

将一个项目拆分成多个实验,多个实验间共同使用同一实验环境,以实现项目的连贯性和真实性。项目提供整套的实验环境及配套工具,用户在切换实验时对应的实验环境不会改变,在下一个实验会继续使用上一实验的实验环境,并最终完成该项目。具体项目案例包括大数据集群运维项目、图书馆管理系统的设计与实现、IBM离职率分析等。

2.2 练习算法

2.2.1 算法集

算法集提供了一个环境,用户可以在里面写代码、运行代码、查看结果,并在其中可视化数据,并与平台中的数据集功能进行交互式使用,可直接调用平台当中的数据集用于算法在实际数据中的实践测试。鉴于这些优点,它能帮助他们便捷地执行各种端到端任务,如数据清洗、统计建模、构建/训练机器学习模型等。

算法集的一个特色是允许把代码写入独立的cell中,然后单独执行。这样做意味着用户可以在测试项目时单独测试特定代码块,无需从头开始执行代码。虽然其他的IDE环境(如RStudio)也提供了这种功能,但就个人使用情况来看,算法集的单元结构是设计的最好的。

算法集的优势还体现在灵活性和交互性上,除了最基础的Python,它还允许用户在上面运行R语言。由于它比IDE平台更具交互性,教师也更乐于在各种教程中用它来展示代码。

2.2.2 数据集

数据集功能提供数量众多的大数据数据集,包括互联网、零售、电商、医疗等相关数据集,数据集中的数据可直接与算法集中的算法进行交互使用,为算法提供所需数据的调用支撑。

教师可根据数据集的内容、格式、数量等为学生设定开放式课题,使用真实的数据集进行大数据项目案例处理分析,深度理解掌握大数据技术是如何处理这些数据的,例如,教师给定一份数据让学生进行预测实验,学生需设计算法进行清洗与预测等。

平台提供开放式上传功能,支持用户将自己的数据上传至平台当中,并可设定是否与他人共用,可帮助用户解决数据存放管理问题,实现用户数据的开放式共享。

2.3 在线考试

2.3.1 理论考核

理论考核采用在线考核模式,将单选题、多选题、判断题、填空题、简答题添加在试卷上,每一道题的题目、正选、分值等内容可由管理员自行设置,简答题题采用关键词进行自动判分,同时也可以由教师手动判分。

2.3.2 实践测评

实践测评考核模式是以实验操作过程为考核点,也称之为实操题考核模式,由教师在管理端设置考核步骤、分值权重,平台提供配套的实验考试环境。学生在实际操作过程中遇到的考核点,需要根据实际结果去填写,到最后统一汇总分数。该模式突破了传统的考核模式,通过实操的方式来加深印象,巩固大数据知识。

2.4 智能教务

2.4.1 教学进度分析

课程实验具有核全局开关功能,打开全局考核后,进行所有实验时都必须完成实验当中设定的每一步考核才能查看下一步。接着,系统不仅自动检测到正在进行实验,也可以手动设定实验状态分析(也可以手动设置分析目标)。查看分析结果时可查看每个班级的学生在进行每个实验时完成度,查看每个实验的每个步骤的通过率、完成率、完成进度、实验总结信息等。

教学进度分析功能可通过智能化的手段,有效帮助教师分析并掌握整个班级的学习情况,根据学生完成实验的进度过程进行授课,选择重点

财务大数据分析实验报告全文共1页,当前为第1页。财务大数据分析实验报告全文共1页,当前为第1页。财务大数据分析实验报告 财务大数据分析实验报告全文共1页,当前为第1页。 财务大数据分析实验报告全文共1页,当前为第1页。 实验项目名称 财务分析--上机实验综述实验者 李培媛 专业班级 财务管理1103班同组者实验日期 2014.04.10—2013.05.10一、实验目的、意义 财务分析上机实验目的在于综合所学知识,了解当代财务分析信息的基本来源,运用互联网和计算机为手段,掌握一套系统有效的分析方法,理论联系实际,对我国资本市场的上市公司进行具体财务分析,完成财务分析报告。这对于培养和提升同学分析现实问题和解决问题的能力,具有重要的作用。 实验基本原理与方法 运用财务分析的基本程序,借助现代信息收集和整理手段和技术,使用Excel等分析和计算工具,对某一上市公司的信息进行全方位的收集和处理,完成上市公司深度分析报告。 实验内容及要求 1、解了解财务与非财务信息收集的基本方法和途径;(演示性) 2、了解金融数据库的种类、结构和信息的内容,掌握使用金融数据库的基本方法;(验证性) 3、根据财务分析的要求,对采集后的信息进行归类、排序、同期化、同质化、综合等统计整理,为使用统计分析工具对其处理创造前提条件;(综合性) 4、了解Excel财务分析模板的基本构成、编制原理及表现形式,对教师提供的Excel财务分析模板进行调整,使之能应用于特定的上市公司;(验证性) 5、选一上市公司应用前述原理和方法进行具体财务分析,完成财务分析报告。(综合性)。 财务大数据分析实验报告
大数据财务分析实训总结全文共5页,当前为第1页。大数据财务分析实训总结全文共5页,当前为第1页。大数据财务分析实训总结 大数据财务分析实训总结全文共5页,当前为第1页。 大数据财务分析实训总结全文共5页,当前为第1页。 [摘要]随着大数据技术向财会行业的渗透,熟悉大数据财务分析的学生成为企业追逐的人才和对象,在财会专业开设大数据分析和业务处理课程成为必然。然而财会学生由于计算机知识和数据分析体系的匮乏,这限制了学生在大数据财务分析上的思维和分析能力,而上海悦岚数据公司开发的DEEP系统则是解决这一难题的有力工具。本文从财务数据分析案例出发,分析了DEEP系统对大数据财务分析的强大功能和不足之处。 [关键词]DEEP系统,职业教育,1+X证书,大数据财务分析 1.职业教育的现状分析 目前职业教育的发展水平还赶不上所谓的新经济、新技术、新业态对职业教育的要求。央领导已经多次用几个"新"来说明新技术革命之下,经济、业态、技术发生的变化。而让人遗憾的是,目前为止职教界对"新职教"既缺乏重视、又缺乏研究。实际上不管你愿意不愿意,职业教育在当前面临着重新定义和如何重新定义的考验。随着云计算、物联网、大数据和人工智能("云物大智")等技术的普及推广,未来的传统岗位将无事可做,代之以的是新的业态和新的岗位。人工智能可能会代替医生、律师等咨询性工作;智能和新能源汽车的投入使用会使家庭用车保有量将削减70%,保险公司和4S店将面临倒闭……在这种情况下,怎么来定义职业教育?怎么来设置专业和课程内容?在这种背景下,"新职教"应运而生。例如传统专业分类尽管还存在,但边界已经模糊了。它们同"云物大智"技术已经高度嫁接起来了。换句话说,专业离开了"云物大智"技术就别叫优质和现代。有些课程也必须改变了,如计算机公共课传统内容的学习可以交由学生自学和网络考试来完成,新的计算机公共课的内容就要把电商技术、物联网技术基础和移动互联网技术基础教给学生。让不同专业的同学掌握这三种技术,这是"新职教"公共课教学大数据财务分析实训总结全文共5页,当前为第2页。大数据财务分析实训总结全文共5页,当前为第2页。内容的重大改革。同时新职教还涉及学校定位、培养规格、教学实践基地功能、考核标准、校企合作、教师队伍的提升、创新教育的落实等诸多方面的再思考和重新定义。 大数据财务分析实训总结全文共5页,当前为第2页。 大数据财务分析实训总结全文共5页,当前为第2页。 2.基于DEEP平台的1+X大数据财务分析技能培训及课程体系建设 教育部等在《关于在院校实施"学历证书+若干职业技能等级证书"制度试点方案》明确提出,院校是1+X证书制度试点的实施主体。试点院校要根据职业技能等级标准和专业教学标准要求,将证书培训内容有机融入专业人才培养方案,优化课程设置和教学内容,统筹教学组织与实施,深化教学方式方法改革,提高人才培养的灵活性、适应性、针对性。北京首冠科技集团以"1+X"大数据财务分析等级证书试点为契机,携手多方力量,推动院校"新会计"专业建设,深化职业教育教学改革,开启大数据财务分析人才培养新时代。情景式案例教学,学数据相关基础理论体系及规模化生产型企业各部门业务与大数据结合的应用场景,让财会专业学生熟悉并体验企业各职能部门常用数据源类型、汇集方法、数据加工、挖掘分析、可视化类型等应用,可以初步结合自身财务背景,对公司各部门运营数据做财务关联管理及经营风险方面,培养初级的数据思维能力。财务场景具体案例实操,培养学生多场景财务数据应用分析能力。体验大数据财务分析的基本过程和所涉及到的基本知识,对大数据财务分析的实战场景有一个直观的认知。四川大学锦城学院的财务会计学院在面临财会专业招生人数不断下降的不利情况下,决定与大数据财务分析、财务共享、RPA财务机器人等一系列知名企业进行深度合作,进行专业转型和传统专业改造,打造面向"云物大智"技术的智能会计和大数据财务专业及方向。为此,财会学院与金蝶合作,引入了财务共享平台及教学管理系统;另外,还与上海悦岚数据公司深度合作,引入该公司开发的DEEP系统,并成为该公司的校企合作基地。财会学院准备以DEEP系统提供的4门课程,即《大数据理论基础与应用实战》《财务大数据融合课》大数据财务分析实训总结全文共5页,当前为第3页。大数据财务分析实训总结全文共5页,当前为第3页。《数据思维与实训》《Python数据科学实例教程》为基础,再结合数据分析的技术体系,如图1所示,建设锦城学院的大数据财务分析课程体系。 大数据财务分析实训总结全文共5页,当前为第3页。 大数据财务分析实训总结全文共5页,当前为第3页。 3.基于DEEP平台的大数据 务分析课程案例教学 3.1实验任务 一是统计差旅费。二是差旅费统计结果的可视化。现有某公司差旅记录数据集,需对数据进行加工
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值