python画散点图分布-python画图汇总(持续更新)

本文详细介绍了如何使用Python进行数据可视化,包括绘制折线图、散点图、概率分布图、箱形图和热图。通过实例展示了matplotlib和seaborn库的使用,用于分析不同数据集的特征分布和相关性。
摘要由CSDN通过智能技术生成

折线图

1322697-20190821085654650-7957920.png

plt.figure(figsize=(40, 40)) # 确定图像画布的大小

plt.subplot(211) # 将画布分为两行一列

plt.xlabel('Number of sample', fontsize=40) # x轴的label

plt.ylabel('Characteristics of the amplitude', fontsize=40) # y轴的label 备注(plot所有的原件都可以加fontsize属性)

plt.title('{} characteristics (ml_id=2 waveType=2)'.format(c_type), fontsize=50) # 图的title

plt.plot(two_type_list[:two_negative_end_index], linestyle = "-", color = 'r', # 绘制折线图,其中若x参数省略,则横坐标以y列表的索引代替

label = 'Negative | average: {} variance: {} median: {}'.format(('%.2f' % np.mean(two_type_list[ : two_negative_end_index])), # label参数表示这条线的label,可以当作图例显示出来

('%.2f' % np.var(two_type_list[ : two_negative_end_index])),

('%.2f' % np.median(two_type_list[ : two_negative_end_index]))),

linewidth=3.0) # 线宽

plt.plot(two_type_list[two_negative_end_index+1:], linestyle = "-", color = 'g', # 备注(一张图可以累积加多个plot)

label = 'Positive | average: {} variance: {} median: {}'.format(('%.2f'

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值