python读取txt文件第一行-python读取文本文件数据

本文要点刚要:

(一)读文本文件格式的数据函数:read_csv,read_table

1.读不同分隔符的文本文件,用参数sep

2.读无字段名(表头)的文本文件 ,用参数names

3.为文本文件制定索引,用index_col

4.跳行读取文本文件,用skiprows

5.数据太大时需要逐块读取文本数据用chunksize进行分块。

(二)将数据写成文本文件格式函数:to_csv

范例如下:

(一)读取文本文件格式的数据集

1.read_csv和read_table的区别:

#read_csv默认读取用逗号分隔符的文件,不需要用sep来指定分隔符

import pandas as pd

pd.read_csv('C:\Users\xiaoxiaodexiao\pythonlianxi\test0424\data.csv')

1368336-20180426224121292-979964237.png

#read_csv如果读的是用非逗号分隔符的文件,必须要用sep指定分割符,不然读出来的是原文件的样子,数据没被分割开

import pandas as pd

pd.read_csv('C:\Users\xiaoxiaodexiao\pythonlianxi\test0424\data.txt')

1368336-20180426224144868-1760190149.png

#与上面的例子可以对比一下区别

import pandas as pd

pd.read_csv('C:\Users\xiaoxiaodexiao\pythonlianxi\test0424\data.txt',sep='|')

1368336-20180426224410679-520935790.png

#read_table读取文件时必须要用sep来指定分隔符,否则读出来的数据是原始文件,没有分割开。

import pandas as pd

pd.read_table('C:\Users\xiaoxiaodexiao\pythonlianxi\test0424\data.csv')

1368336-20180426224501340-507311282.png

#read_table读取数据必须指定分隔符

import pandas as pd

pd.read_table('C:\Users\xiaoxiaodexiao\pythonlianxi\test0424\data.txt',sep='|')

1368336-20180426224605645-1046616757.png

2.读取文本文件时不用header和names指定表头时,默认第一行为表头

#用header=None表示数据集没有表头,会默认用阿拉伯数字填充表头和索引

pd.read_table('C:\Users\xiaoxiaodexiao\pythonlianxi\test0424\data.txt',sep='|',header=None)

1368336-20180426224759907-1866915755.png

#用names可以自定义表头

pd.read_table('C:\Users\xiaoxiaodexiao\pythonlianxi\test0424\data.txt',sep='|',

names=['x1','x2','x3','x4','x5'])

1368336-20180426224858254-1016291189.png

3.默认用阿拉伯数字指定索引;用index_col指定某一列作为索引

names=['x1','x2','x3','x4','x0']

pd.read_table('C:\Users\xiaoxiaodexiao\pythonlianxi\test0424\data.txt',sep='|',

names=names,index_col='x0')

1368336-20180426225022347-270755606.png

4.以下示例是用skiprows将hello对应的行跳过后读取其他行数据,不管首行是否作为表头,都是将表头作为第0行开始数

可以对比一下三个例子的区别进行理解

pd.read_csv('C:\Users\xiaoxiaodexiao\pythonlianxi\test0424\data1.txt')

1368336-20180426225126273-1981446421.png

names=['x1','x2','x3','x4','x0']

pd.read_csv('C:\Users\xiaoxiaodexiao\pythonlianxi\test0424\data1.txt',names=names,

skiprows=[0,3,6])

1368336-20180426225208651-941727855.png

pd.read_csv('C:\Users\xiaoxiaodexiao\pythonlianxi\test0424\data1.txt',

skiprows=[0,3,6])

1368336-20180426225257812-1841733706.png

pd.read_csv('C:\Users\xiaoxiaodexiao\pythonlianxi\test0424\data1.txt',header=None,

skiprows=[0,3,6])

1368336-20180426225330405-1103613451.png

5.分块读取,data1.txt中总共8行数据,按照每块3行来分,会读3次,第一次3行,第二次3行,第三次1行数据进行读取。

注意这里在分块的时候跟跳行读取不同的是,表头没作为第一行进行分块读取,可通过一下两个例子对比进行理解。

chunker = pd.read_csv('C:\Users\xiaoxiaodexiao\pythonlianxi\test0424\data1.txt',chunksize=3)

for m in chunker:

print(len(m))

print m

1368336-20180426225501813-266640696.png

chunker = pd.read_csv('C:\Users\xiaoxiaodexiao\pythonlianxi\test0424\data1.txt',header=None,

chunksize=3)

for m in chunker:

print(len(m))

print m

1368336-20180426225607037-1448990798.png

(二)将数据写入文本格式用to_csv

以data.txt为例,注意写出文件时,将索引也写入了

data=pd.read_table('C:\Users\xiaoxiaodexiao\pythonlianxi\test0424\data.txt',sep='|')

print data

1368336-20180426225716866-1303984639.png

#可以用index=False禁止索引的写入。

data=pd.read_table('C:\Users\xiaoxiaodexiao\pythonlianxi\test0424\data.txt',sep='|')

data.to_csv('C:\Users\xiaoxiaodexiao\pythonlianxi\test0424\outdata.txt',sep='!',index=False)

1368336-20180426225814894-925833732.png

#可以用columns指定写入的列

data=pd.read_table('C:\Users\xiaoxiaodexiao\pythonlianxi\test0424\data.txt',sep='|')

data.to_csv('C:\Users\xiaoxiaodexiao\pythonlianxi\test0424\outdata2.txt',sep=',',index=False,

columns=['a','c','d'])

1368336-20180426225838900-1320029810.png

  • 0
    点赞
  • 0
    评论
  • 2
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
©️2020 CSDN 皮肤主题: 1024 设计师:白松林 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值