题目
https://www.lintcode.com/problem/1817/
你有一大块巧克力,它由一些甜度不完全相同的小块组成。我们用数组 sweetness 来表示每一小块的甜度。
你打算和 K 名朋友一起分享这块巧克力,所以你需要将大巧克力切割 K 次才能得到 K+1 块,每一块都由一些 连续 的小块组成。
为了表现出你的慷慨,你将会吃掉 总甜度最小 的一块,并将其余几块分给你的朋友们。
请找出一个最佳的切割策略,使得你所分得的巧克力 总甜度最大,并返回这个 最大总甜度。
0 <= K < sweetness.length <= 10^4
1 <= sweetness[i] <= 10^5
样例
示例 1:
输入: sweetness = [1,2,3,4,5,6,7,8,9], K = 5
输出: 6
解释: 你可以将巧克力分成以下几份 [1,2,3], [4,5], [6], [7], [8], [9]
示例 2:
输入: sweetness = [5,6,7,8,9,1,2,3,4], K = 8
输出: 1
解释: 仅有一种方式将他们分成9份.
示例 3:
输入: sweetness = [1,2,2,1,2,2,1,2,2], K = 2
输出: 5
解释: 你能将巧克力分成如下三份 [1,2,2], [1,2,2], [1,2,2]
思路
解法: 二分答案
算法:二分查找
解题思路
我们可以得到答案的范围是从 0 到 巧克力甜度总和。那么我们可以对这个范围进行二分,
然后判断是否答案满足题目要求。
复杂度分析 时间复杂度:O(nlogn) n为甜度范围。
空间复杂度:O(n) n为甜度范围,存储当前甜度可能会分得的块数。
分出一个甜度,遍历所有巧克力块,如果加起来不够这个甜度就继续加入下一块,
如果够了就累加分块数,看最后是否能分出K+1块
这个结果一定是有一个范围并且超过一个值就不能得到足够块数的
答案
public class Solution {
/**
* @param sweetness: an integer array
* @param k: an integer
* @return: return the maximum total sweetness of the piece
*/
public int maximizeSweetness(int[] sweetness, int k) {
/*
解法: 二分答案
算法:二分查找
解题思路
我们可以得到答案的范围是从 0 到 巧克力甜度总和。那么我们可以对这个范围进行二分,
然后判断是否答案满足题目要求。
复杂度分析 时间复杂度:O(nlogn) n为甜度范围。
空间复杂度:O(n) n为甜度范围,存储当前甜度可能会分得的块数。
分出一个甜度,遍历所有巧克力块,如果加起来不够这个甜度就继续加入下一块,
如果够了就累加分块数,看最后是否能分出K+1块
这个结果一定是有一个范围并且超过一个值就不能得到足够块数的
*/
int L = 1, R = Integer.MAX_VALUE;
while (L + 1 < R) {
int mid = L + (R - L) / 2;
if (f(sweetness, mid, k)) {
L = mid;
} else {
R = mid;
}
}
if (f(sweetness, R, k)) return R;
return L;
}
public static boolean f(int[] arr, int mid, int k) {
int cnt = 0, sum = 0;
for (int i : arr) {
sum += i;
if (sum >= mid) {
cnt++;
sum = 0;
}
}
return cnt >= (k + 1);
}
}