[机器学习基石]台大林轩田笔记2 -- Learning to Answer Yes/No

一、Perceptron Hypothesis Set(15min)

场景:银行根据资料判断是否给客户发信用卡。是非问题
在这里插入图片描述
建立模型:好的(+1)、坏的(-1)。
所有特征的加权和的值与一个设定的阈值threshold进行比较:大于这个阈值,输出为+1,即发信用卡;小于这个阈值,输出为-1,即不发信用卡。
在这里插入图片描述
这样的h叫做proceptron(感知器)
在这里插入图片描述
为了计算方便通常将阈值threshold当做 w 0 w_0 w0,引入一个 x 0 x_0 x0 w 0 w_0 w0相乘,简化了计算。
为了更清晰地说明感知机模型,我们假设Perceptrons在二维平面上,即 h ( x ) = s i g n ( w 0 + w 1 x 1 + w 2 x 2 ) h ( x ) = s i g n ( w 0 + w 1 x 1 + w 2 x 2 ) h(x)=sign(w_0+w_1x_1+w_2x_2)h(x)=sign(w_0+w_1x_1+w_2x_2) h(x)=sign(w0+w1x1+w2x2)h(x)=sign(w0+w1x1+w2x2)。其中, w 0 + w 1 x 1 + w 2 x 2 = 0 w_0+w_1x_1+w_2x_2=0 w0+w1x1+w2x2=0是平面上一条分类直线,直线一侧是正类(+1),直线另一侧是负类(-1)。权重w不同,对应于平面上不同的直线。
在这里插入图片描述
从几何角度,proceptron就是几何上的一条线。
习题1 选择2
在这里插入图片描述

二、Perceptron Learning Algorithm(PLA)(19min)

怎么选择一条最好的线(理想的 g g g)。如何设计一个演算法 A A A,来选择一个最好的直线,能将平面上所有的正类和负类完全分开,也就是找到最好的 g g g,使 g ≈ f g≈f gf
在这里插入图片描述
使用逐点修正的思想,随意去一条直线,看哪些点分错了,然后一个个点修正,逐步修正。实际操作中,可以一个点一个点地遍历,发现分类错误的点就进行修正,直到所有点全部分类正确。这种被称为Cyclic PLA。
在这里插入图片描述
图解的形式来介绍PLA的修正过程:
在这里插入图片描述
找第一条线
在这里插入图片描述
更新第一个点
在这里插入图片描述
再修正一个点
在这里插入图片描述
在这里插入图片描述
叉叉表示错误,继续转回来,又转太多了
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
这里是一条完美的线,分割成两类。
在这里插入图片描述
找到一个犯错的点,如果犯错就修正他
习题2 选择3
 选择

三、Guarantee of PLA(12min)

看看PLA什么时候停下来,要达到这个终止条件,就必须保证D是线性可分(linear separable)。
在这里插入图片描述
在这里插入图片描述
对于线性可分的情况,如果有这样一条直线,能够将正类和负类完全分开,令这时候的目标权重为 w f w_f wf,则对每个点,必然满足 y n = s i g n ( w T x n ) y_n=sign(w^Tx_n) yn=sign(wTxn),即对任一点:
在这里插入图片描述
PLA会对每次错误的点进行修正,更新权重 w t + 1 w_{t+1} wt+1的值,如果 w t + 1 w_{t+1} wt+1 w f w_f wf越来越接近,数学运算上就是内积越大,那表示 w t + 1 w_{t+1} wt+1是在接近目标权重 w f w_f wf,证明PLA是有学习效果的。所以,我们来计算 w t + 1 w_{t+1} wt+1 w f w_f wf的内积:
在这里插入图片描述
从推导可以看出, w t + 1 w_{t+1} wt+1 w f w_f wf的内积跟 w t w_t wt w f w_f wf的内积相比更大了。似乎说明了 w t + 1 w_{t+1} wt+1更接近 w f w_f wf,但是内积更大,可能是向量长度更大了,不一定是向量间角度更小。所以,下一步,我们还需要证明 w t + 1 w_{t+1} wt+1 w t w_t wt向量长度的关系:
在这里插入图片描述
w t w_t wt只会在分类错误的情况下更新,最终得到的 ∣ ∣ w t + 1 2 ∣ ∣ ||w^2_{t+1}|| wt+12相比 ∣ ∣ w t 2 ∣ ∣ ||w^2_t|| wt2的增量值不超过 m a x ∣ ∣ x n 2 ∣ ∣ max||x^2_n|| maxxn2。也就是说, w t w_t wt的增长被限制了, w t + 1 w_{t+1} wt+1 w t w_t wt向量长度不会差别太大!

如果令初始权值 w 0 = 0 w_0=0 w0=0,那么经过 T T T次错误修正后,有如下结论:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
上述不等式左边其实是 w T w_T wT w f w_f wf夹角的余弦值,随着T增大,该余弦值越来越接近1,即 w T w_T wT w f w_f wf越来越接近。同时,需要注意的是, T c o n s t a n t ≤ 1 \sqrt{T}constant\le1 T constant1,也就是说,迭代次数 T T T是有上界的。根据以上证明,我们最终得到的结论是: w t + 1 w_{t+1} wt+1 w f w_f wf的是随着迭代次数增加,逐渐接近的。而且, P L A PLA PLA最终会停下来(因为 T T T有上界),实现对线性可分的数据集完全分类。
参考:台湾大学林轩田机器学习基石课程学习笔记2 – Learning to Answer Yes/No
习题3 选择2
在这里插入图片描述

四、Non-Separable Data(12min)

上一部分,我们证明了线性可分的情况下,PLA是可以停下来并正确分类的,但对于非线性可分的情况, w f w_f wf实际上并不存在,那么之前的推导并不成立,PLA不一定会停下来。所以,PLA虽然实现简单,但也有缺点:
在这里插入图片描述
对于非线性可分的情况,我们可以把它当成是数据集D中掺杂了一下noise,事实上,大多数情况下我们遇到的D,都或多或少地掺杂了noise。这时,机器学习流程是这样的:

在非线性情况下,我们可以把条件放松,即不苛求每个点都分类正确,而是容忍有错误点,取错误点的个数最少时的权重w:
在这里插入图片描述
事实证明,上面的解是NP-hard问题,难以求解。然而,我们可以对在线性可分类型中表现很好的PLA做个修改,把它应用到非线性可分类型中,获得近似最好的g。

修改后的PLA称为Packet Algorithm。它的算法流程与PLA基本类似,首先初始化权重w0w0,计算出在这条初始化的直线中,分类错误点的个数。然后对错误点进行修正,更新w,得到一条新的直线,在计算其对应的分类错误的点的个数,并与之前错误点个数比较,取个数较小的直线作为我们当前选择的分类直线。之后,再经过n次迭代,不断比较当前分类错误点个数与之前最少的错误点个数比较,选择最小的值保存。直到迭代次数完成后,选取个数最少的直线对应的w,即为我们最终想要得到的权重值。

贪心思想:找到尽可能多正确的线
在这里插入图片描述

习题4 选择1 贪心算法会需要额外的计算时间在这里插入图片描述

总结

在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值