[princeton/Algotithm I/week1](2)Interview Questions: Union–Find

Interview Questions: Union-Find

Hint: union−find.

题目的意思是有一个包含n个成员的社交网络,日志文件log按照时间戳顺序存储了两个成员之间成为朋友的时间,共有m条记录。让我们设计一个算法来根据这个log文件来计算m个成员全部通过朋友关系连通的时间。

这是个典型的并查集。思路是读取日志文件,遍历文件记录,逐条记录union。采用加权quick-union算法,就可以满足mlogn的复杂度要求。


public class SocialNetwork{
    public void main(String[] args){
 
    }
 
    public class UnionFind{
        private int[] id;
        private int[] sz;
        private int nCount;
        private boolean bAllConnected;
        
        // we use the path compress
        private int root(int i){
            while(i != id[i]){
               id[i] = id[id[i]]; 
               i = id[i];
            }
            return i;
        }
 
        public UnionFind(int n){
            nCount = n;
            bAllConnected = false;
            id = new int[n];
            sz = new int[n];
            for(int i = 0; i < n; i++){
                id[i] = i;
                sz[i] = 1;
            }
        }
        public boolean connected(int p, int q){
            return root(p) == root(q);
        }
 
        public boolean linkPair(int p, int q){
            int rp = root(p);
            int rq = root(q);
            if(rp == rq) return bAllConnected ;
            if(sz[rp] < sz[rq]){
                sz[rq] += sz[rp];
                id[rp] = rq;
                if(sz[rq] == nCount)
                    bAllConnected = true;
            }else{
                sz[rp] += sz[rq];
                id[rq] = rp;
                if(sz[rp] == nCount)
                    bAllConnected = true;
            }
            return bAllConnected;
        }
    }
}

 

 Hint: maintain an extra array to the weighted quick-union data structure that stores for each root \mathtt{i}i the large element in the connected component containing \mathtt{i}i.

分析:

与加权 quick-union算法思路大概一致,在union()方法中进行根节点的控制,使得根节点始终是最大的数。

import edu.princeton.cs.algs4.StdIn;
import edu.princeton.cs.algs4.StdOut;
 
public class UF {
	private int[] id;	//分量id
	private int count;	//分量数量
	
	public UF(int N) {
		//初始化分量id数组
		count = N;
		id = new int[N];
		for (int i = 0; i < N; i++)
			id[i] = i;
	}
	
	public int count() {
		return count;
	}
	
	public boolean connected(int p, int q) {
		return find(p) == find(q);
	}
	
	public int find(int p) {
		while (p != id[p])
			p = id[p];
		return p;
	}
	
	public void union(int p, int q) {
		int i = find(p);
		int j = find(q);
		if (i == j)
			return;
		if (i > j) 
			id[j] = i;
		else
			id[i] = j;
		count--;
	}
	
	public static void main(String[] args) {
		// TODO Auto-generated method stub
		//解决由StdIn得到的动态连通性问题
		int N = StdIn.readInt();
		UF uf = new UF(N);
		while (!StdIn.isEmpty()) {
			int p = StdIn.readInt();
			int q = StdIn.readInt();
			if (uf.connected(p, q))	continue;
			uf.union(p, q);
			StdOut.println(p + "" + q);
		}
		StdOut.println(uf.count() + "components");
	}	
}                                                                                                                       

 

分析:

是对题目2的应用;每次remove(x)都是将 x 和 x + 1 进行连接,每次remove(x)会使数组的x消失可以等价成寻找根节点的模型。getsuccessor(x)即是返回 x 的根节点。

Hint: use the modification of the union−find data discussed in the previous question.

import edu.princeton.cs.algs4.StdOut;
 
 
public class Successor {
	private int[] id;		//父链接索引
	public Successor(int N) {
		id = new int[N];
		for(int i = 0; i < N; i++)
			id[i] = i;
	}
	public int find(int p) {
		//找到根节点
		while(p != id[p])
			p = id[p];
		return p;
	}
	public void remove(int p) {
		union(p, p + 1);
	}
	public void union(int p, int q) {
		int i = id[p];
		int j = id[q];
		if (i == j)
			return;
		//将较大的数作为根节点
		else if (i > j)
			id[q] = i;
		else
			id[p] = j;
	}
	public int getsuccessor(int p) {
		return find(p);
	}
	public static void main(String[] args) {
		Successor s = new Successor(10);
		s.remove(6);
		s.remove(5);
		s.remove(3);
		StdOut.println("the successor of 3 is " + s.getsuccessor(3));
		s.remove(4);
		s.remove(7);
		StdOut.println("the successor of 3 is " + s.getsuccessor(3));
		StdOut.println("the successor of 1 is " + s.getsuccessor(1));
	}
}

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值