实战 | 北京高档酒店价格因素分析

数据分析实战又来啦,今天我们进行的是北京高档酒店的价格因素分析,话不多说,直接上代码。

1. 导入所需要的包

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import warnings
warnings.filterwarnings("ignore")

2.读取文件

hotel=pd.read_csv('hoteldata.csv')
#将四项评分的平均分作为总体评分
hotel['总体评分']=(hotel['卫生评分']+hotel['服务评分']+hotel['设施评分']+hotel['位置评分'])/4
#2015之前的旧装修,2015之后的为新装修
hotel['装修新旧']=pd.cut(hotel['装修时间'],[0,2015,2019],labels=['旧装修','新装修'])
hotel.head()

将各个酒店的情况进行评分,总体评分由卫生评分、服务评分、设施评分和位置评分构成,装修的新旧以装修时间来划分。

3  描述性统计分析

3.1 酒店房价分布直方图

price=hotel['房价']
plt.figure("hist",figsize=(15,7))
n, bins, patches = plt.hist(price, bins=20)  
plt.show()

3.2 因变量数字特征

# 酒店房价平均值
hotel['房价'].mean()
1655.5125899280577

3.3 酒店因素箱型图

#酒店房间类型
hotel['对数房价']=np.log(hotel['房价'])
plt.figure(figsize=(7,7))
sns.boxplot(x='房间类型',y='对数房价',data=hotel)

符合一般的房价标准,按照标准间、商务间、豪华套间价格依次递增。

#酒店区域因素分析
plt.figure(figsize=(7,7))
sns.boxplot(x='地区',y='对数房价',data=hotel)

根据地区划分的箱型图展示,其中,东城区和朝阳区的房价最高,海淀区紧随其后。

#酒店装修时间
hotel['对数房价']=np.log(hotel['房价'])
plt.figure(figsize=(7,7))
sns.boxplot(x='装修新旧',y='对数房价',data=hotel)

新装修的价格高于就旧装修,并且价格差异明显。

3.4 评分因素相关系数

grade=pd.DataFrame([hotel['卫生评分'],hotel['服务评分'],hotel['设施评分'],hotel['位置评分']]).transpose()
correlation=grade.corr()
plt.subplots(figsize=(9, 9)) # 设置画面大小
sns.heatmap(correlation, annot=True, vmax=1, square=True, cmap="Blues")

#评分因素箱型图
hotel['评分分组']=pd.cut(hotel['总体评分'],[0,4.5,5.0],labels=['评分低','评分高'])
sns.boxplot(x='评分分组',y='对数房价',data=hotel)

评分高的房价高于评分低的房价。

4  对数线性回归模型

4.1 特征处理

#特征选择与处理
features=['地区','房间类型','装修新旧','总体评分','校园生活','公司','出行住宿']
X=hotel[features]
X['地区']=pd.get_dummies(X['地区'])
X['房间类型']=pd.get_dummies(X['房间类型'])
X['装修新旧']=pd.get_dummies(X['装修新旧'])

# 对特征进行归一化处理
from sklearn import preprocessing
X['总体评分']=preprocessing.scale(X['总体评分'])
X['校园生活']=preprocessing.scale(X['校园生活'])
X['公司']=preprocessing.scale(X['公司'])
X['出行住宿']=preprocessing.scale(X['出行住宿'])

4.2 模型拟合

from sklearn import linear_model
model=linear_model.LinearRegression()
model.fit(X,y)

4.3 计算残差

np.mean(abs(model.predict(X)-y))
0.375942

4.4 查看模型拟合情况

import statsmodels.api as sm
est=sm.OLS(y,X).fit()
print(est.summary())

往期文章Pandas时间序列数据操作
readability: 英文文本数据可读性库

Matplotlib中的plt和ax都是啥?

70G上市公司定期报告数据集
5个小问题带你理解列表推导式
文本数据清洗之正则表达式
Python网络爬虫与文本数据分析
综述:文本分析在市场营销研究中的应用
如何批量下载上海证券交易所上市公司年报
Numpy和Pandas性能改善的方法和技巧
漂亮~pandas可以无缝衔接Bokeh
YelpDaset: 酒店管理类数据集10+G

先有收获,再点在看!

公众号后台回复关键字【酒店】获取数据集

  • 6
    点赞
  • 31
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
好的,你的问题是关于单因素方差分析的案例实战和详解。单因素方差分析是一种用于比较两个或多个组之间均值差异的统计方法。下面是一个关于单因素方差分析的案例实战和详解。 案例实战: 假设你是一家公司的销售经理,想要确定不同销售员的销售额是否存在显著差异。你选取了5个销售员,记录了他们在过去3个月中的销售额。下面是数据: 销售员1:20,000,21,000,22,000 销售员2:22,000,23,000,24,000 销售员3:22,000,22,000,22,000 销售员4:18,000,19,000,20,000 销售员5:19,000,20,000,21,000 现在你需要进行单因素方差分析来比较这5个销售员的销售额是否存在显著差异。 详解: 第一步是计算每个销售员的平均销售额和总销售额: 销售员1:(20,000+21,000+22,000)/3=21,000,总销售额=63,000 销售员2:(22,000+23,000+24,000)/3=23,000,总销售额=69,000 销售员3:(22,000+22,000+22,000)/3=22,000,总销售额=66,000 销售员4:(18,000+19,000+20,000)/3=19,000,总销售额=57,000 销售员5:(19,000+20,000+21,000)/3=20,000,总销售额=60,000 第二步是计算总体平均销售额和总体平方和: 总体平均销售额=(63,000+69,000+66,000+57,000+60,000)/5=63,000 总体平方和=Σ(xi-xbar)²=141,000,000 第三步是计算组内平方和和组间平方和: 组内平方和=Σ(xi-xi_bar)²=32,000,000 组间平方和=Σ(ni(x_i_bar-x_bar)²)=109,000,000 其中ni为每个组的样本数。 第四步是计算均方: 均方组内=组内平方和/(总样本数-组数)=32,000,000/(15-5)=3,200,000 均方组间=组间平方和/(组数-1)=109,000,000/4=27,250,000 第五步是计算F值: F=均方组间/均方组内=27,250,000/3,200,000=8.52 第六步是查找F分布表并确定显著性水平。 在显著性水平为0.05和4个自由度的情况下,从F分布表可以得到临界值为3.10。 因为F值大于临界值,所以我们可以拒绝原假设,即认为销售员之间的销售额存在显著差异。 综上所述,通过单因素方差分析,我们可以得出结论:销售员之间的销售额存在显著差异。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值