- 博客(1)
- 收藏
- 关注
原创 CycleGAN 介绍及实际操作问题分析与解决方案
CycleGAN 依靠生成器和判别器之间的对抗训练、循环一致性损失和恒等映射损失,实现了跨域图像转换。在实际操作中,若发现生成器输出越来越接近原图,可能是因为损失权重设置不合理(过高的循环一致性和恒等映射损失),或对抗性损失信号不足、判别器结构太弱。将调整为 10 或更低;将设为 0.5 *或更低。增加判别器卷积层或滤波器数量;调整判别器学习率(例如 0.0002)及 beta 参数(例如 0.5),以防止其过快收敛。
2025-02-18 19:22:24
1560
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅