[Python]数据可视化--Matplotlib教程(二)

这篇教程详细介绍了如何使用Python的Matplotlib库绘制各种图表,包括普通图、散点图、条形图、等高线图、灰度图、饼状图、量场图、网格、多重网格、极轴图、3D图和手稿图,提供丰富的源代码示例。
摘要由CSDN通过智能技术生成

学习使用Python的Matplotlib类库—百花齐放

使用matploylib绘制各种图表,多开花(逃)?
'Festinatione facit vastum'

  • 传送门

总目录传送门
[Python]数据可视化–Matplotlib教程(一) 传送门

  • 普通图
  • 散点图
  • 条形图
  • 等高线图
  • 灰度图(Imshow)
  • 饼状图
  • 量场图(Quiver Plots)
  • 网格
  • 多重网格
  • 极轴图
  • 3D 图
  • 手稿图

普通图

源代码链接

import numpy as np
import matplotlib.pyplot as plt

# 普通图
n = 256
X = np.linspace(-np.pi, np.pi, n, endpoint=True)
Y = np.sin(2 * X)

plt.plot(X, Y + 1, color='blue', alpha=1.00)
plt.plot(X, Y - 1, color='blue', alpha=1.00)

plt.show()

普通图


散点图

源代码链接

import numpy as np
import matplotlib.pyplot as plt
n = 1024
X = np.random.normal(0, 1, n)
Y = np.random.normal(0, 1, n)

plt.scatter(X, Y)
plt.show()

散点图


条形图

源代码链接

import numpy as np
import matplotlib.pyplot as plt

# 条形图
n = 12
X = np.arange(n)
Y1 = (1 - X / float(n)) * np.random.uniform(0.5, 1.0, n)
Y2 = (1 - X / float(n)) * np.random.uniform(0.5, 1.0, n)

plt.bar(X, +Y1, facecolor='#9999ff', edgecolor='white')
plt.bar(X, -Y2, facecolor='#ff9999', edgecolo
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值