Spark的StandAlone集群模式安装部署

本文详细介绍了Spark的StandAlone集群模式,包括集群角色解析——master和slave,集群规划,如节点配置,以及如何修改和分发配置文件。接着,文章阐述了启动和停止集群的步骤,并提供了测试集群运行wordcount程序的方法。强调在集群模式下,程序应读取HDFS文件而非本地文件。

StandAlone集群模式的介绍与部署

集群角色介绍

Spark是基于内存计算的大数据并行计算框架,实际中运行计算任务肯定是使用集群模式,那么就需要了解spark自带的standalone集群模式的架构以及它的运行机制

stand alone集群模式使用了分布式计算中的master - slave模型
master是集群中含有master进程的节点
slave是集群中worker节点含有Executor进程

Spark架构图如下:
在这里插入图片描述
Apache对spark架构的官方描述:http://spark.apache.org/docs/latest/cluster-overview.html

集群规划

节点1:master
节点2:slave/worker
节点3:slave/worker

修改配置并分发

  • 修改spark配置文件
    进入spark解压路径的conf目录:cd /export/servers/spark-2.2.0-bin-2.6.0-cdh5.14.0/conf/
    拷贝spark-env.sh.template并修改名称为spark-env.sh:cp spark-env.sh.template spark-env.sh
  • 修改并添加配置
#配置java环境变量
export JAVA_HOME=${JA
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值