剑指offer系列-----item12 求某double数的int次方

61 篇文章 0 订阅

题干:
给定一个double类型的浮点数base和int类型的整数exponent。求base的exponent次方。

保证base和exponent不同时为0

思路:
本题只要不要忘记这个次数可正可负,就是一道无敌简单的题目。下面首先给出常规做法,即分exponent的正负情况进行累乘即可。

public class Solution {
    public double Power(double base, int exponent) {
        double sum = 1;
        if(exponent>=0){
            for(int i=0;i<exponent;i++){
                sum=sum*base;
            }
        }
        else {
            for(int i=0;i<-exponent;i++){
                sum=sum*base;
            }
            sum=1/sum;
        }
        return sum;
  }
}

然而这只是一种非常常规的做法,在exponent很大的时候,显然不够高效。我们试着分析一下,在计算n次方时,其实有很多可以讨巧的地方。譬如8次方可以用4次方的平方来表示,而4次方又可以用平方的平方来表示。而累乘中却忽视了这一点,只是无脑的从小累乘到大,在数据比较大的时候显然是不够高效的。进一步给出分析如下:

从而得到最终的代码:

public static double Power1(double base, int exponent){
    boolean flag = true;//设置标志位,根据标志位输出倒数或者原数
    if(exponent<0){//负数无法用右移1位实现除以2,所以所有的负数全部转为正数
        flag=false;
        exponent=-exponent;
    }
    double res = unitpower(base,exponent);
    return flag ? res : 1/res;
}


public static double unitpower(double base, int exponent){
    if(exponent==1){
        return base;
    }
    if(exponent==0){
        return 1;
    }
    double res = unitpower(base,exponent >> 1);//每次递归将exponent除以2
    res *=res; //exponent为偶数
    if((exponent & 1)==1){//exponent为奇数,同样我们可以用正数&1的值来判断奇数偶数
        res *=base;
    }
    return res;
}

值得一提的是,为了进一步去简化整个代码,用位计算代替了除以2和取余判断奇偶,因为位运算比加减乘数取余的效率高的多。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值