人工智能学术前沿
人工智能和机器学习领域的学术论文汗牛充栋。每年的各大顶级会议、研讨班录用好几千篇论文,即便是亲临现场也很难追踪到所有的前沿信息。在时间精力有限的情况下,选择精读哪些论文,学习哪些热门技术就成为了 AI 学者和从业人员所头痛的问题。
优惠券已抵扣
余额抵扣
还需支付
¥9.90
¥99.00
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
weixin_38113026
这个作者很懒,什么都没留下…
展开
-
ACL 2017精选论文
涉及自然语言处理、人工智能、机器学习等诸多理论以及技术的顶级会议——第55届计算语言学年会(The 55th Annual Meeting of the Association for Computational Linguistics,简称 ACL 会议)于今年7月31日-8月4日在加拿大温哥华(Vancouver)举行。从近期谷歌学术(Google Scholar)公布的学术杂志和会议排名来看,ACL 依然是最重要的自然语言处理相关的人工智能会议。因为这个会议的涵盖面非常广泛,且理论文章较多,一般的读者原创 2020-06-04 07:08:58 · 279 阅读 · 0 评论 -
AISTATS 2017精选论文
涉及人工智能、机器学习、统计学习理论等多方面技术的顶级会议-第20届人工智能和统计(The 20th International Conference on Artificial Intelligence and Statistics,多数时候简称 AISTATS 会议)今年4月20日-22日在美国弗罗里达州的劳德代尔堡(Fort Lauderdale)举行。历史上,AISTATS 相比于 ICML 或者 NIPS,是一个相对比较“轻量级”(主要是指大会的发表论文数目)的偏重理论和全方面统计学习的学术大会。原创 2020-06-04 07:08:26 · 1892 阅读 · 0 评论 -
WWW 2017精选论文
涉及数据库、数据挖掘分析、应用机器学习、搜索引擎技术等多方面技术的顶级会议第26届万维网大会(26th International World Wide Web Conference) 今年4月3日-7日在南半球的澳大利亚珀斯举行。历史上,万维网大会都是讨论重要学术成就的,特别是关于互联网科技发布的重要学术和技术大会。因为这个会议涵盖非常广泛的主题,而且一般的读者很难从浩如烟海的文献中即刻抓取到有用信息,笔者从众多文章中精选出5篇有代表性的文章,为读者提供思路。Beyond Globally Optima原创 2020-06-04 07:07:54 · 2211 阅读 · 0 评论 -
ICLR 2017精选论文
深度学习及表征学习的顶级会议 The 5th International Conference on Learning Representations(ICLR 2017)将于今年4月24日-26日在法国南部的地中海海港城市土伦举行。今年是 ICLR 举办的第五个年头。这个从最开始就依靠深度学习权威学者 Yann LeCun(Facebook AI研究院主管)和 Yoshua Bengio 所引领的会议正在成为深度学习研究和实践发展的桥头堡。ICLR 因为其开放的论文审核制度和更加专注的研究讨论范畴已经吸引原创 2020-06-04 07:07:21 · 915 阅读 · 0 评论 -
WSDM 2017精选论文
数据挖掘和机器学习应用的顶级会议The Tenth ACM International Conference on Web Search and Data Mining (WSDM 2017)今年2月已经在英国剑桥圆满举行。正值 WSDM 十周年,会议上对 WSDM 的发展进行了回顾和展望。纵观过去十年的发展,WSDM 已经成长为学术圈和工业界都十分倚重的经典跨界会议。不像 KDD、WWW 或者SIGIR,WSDM 因为从最开始就由不少工业界的学术领导人发起并且长期引领,所以十分重视工业界的学术成果的展现原创 2020-06-04 07:06:49 · 276 阅读 · 0 评论 -
NIPS 2016精选论文
人工智能和机器学习的顶级会议 Neural Information Processing Systems 2016 (NIPS 2016)12月已经在西班牙的巴塞罗那圆满举行。因为 NIPS 的论文涵盖主题非常广泛,所以一般读者很难从浩如烟海的文献中即刻抓取到有用信息。同时,读到有价值的信息需要专业知识和不少时间投入。在本文中,继续上一期,笔者精选出5篇有意思的文章,为读者解惑。Can Active Memory Replace Attention概要:Active Memory 能够替代 Attent原创 2020-06-04 07:06:19 · 278 阅读 · 0 评论 -
深度增强学习前沿算法思想
2016年 AlphaGo 计算机围棋系统战胜顶尖职业棋手李世石,引起了全世界的广泛关注,人工智能进一步被 推到了风口浪尖。而其中的深度增强学习算法是 AlphaGo 的核心,也是通用人工智能的实现关键。本文将 带领大家了解深度增强学习的前沿算法思想,领略人工智能的核心奥秘。前言深度增强学习(Deep Reinforcement Learning,DRL)是近两年来深度学习领域迅猛发展起来的一个分支,目的是解决计算机从感知到决策控制的问题,从而实现通用人工智能。以 Google DeepMind 公司为原创 2020-06-04 07:05:48 · 238 阅读 · 0 评论