题目地址
https://leetcode-cn.com/problems/maximum-subarray/
题目描述
给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
示例:
输入: [-2,1,-3,4,-1,2,1,-5,4],
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。
进阶:
如果你已经实现复杂度为 O(n) 的解法,尝试使用更为精妙的分治法求解。
代码初步
拿到题目,首先想到的还是暴力解法,emmm 掩面哭泣。
- 思路:
第一层for循环,从头到尾遍历的选出一个元素作为起点,然后第二层for循环,从头到尾遍历的选出一个元素作为终点,第三层for循环,两点之间追加求和
- 问题:
刚开始自己做得时候,想着用两层for循环,但是就有一种情况始终cover不了,就是当最大和为最后一个数字时,后来参考了一下别人的解法,得到了下面的算法。
class Solution(object):
def maxSubArray(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
max = nums[0]
for i in range(0,len(nums)):
for j in range(i,len(nums)):
sum = 0
# 当最大和为最后一个数字时,两个for循环解决不了问题,因为当i遍历到最后一个数字时,不会进入第2个for循环,也就不会判断max<sum
for k in range(i,j+1):
sum +=nums[k]
if max<sum:
max = sum
return max
#s = Solution()
#print(s.maxSubArray([-1,0,-2]))
精简代码
-
思路:动态规划——时间复杂度O(n)
设sub[i]为以第i个元素结尾且和最大的连续子数组,假设对于元素i,所有以它前面的元素结尾的子数组的长度都已经求得,那么以第i个元素结尾且和最大的连续子数组实际上,要么是以第i-1个元素结尾且和最大的连续子数组加上这个元素,要么是只包含第i个元素,
即sub[i]= max(sum[i-1] + a[i], a[i]),可以通过判断sum[i-1] + a[i]是否大于a[i]来做选择,而这实际上等价于判断sum[i-1]是否大于0。由于每次运算只需要前一次的结果,因此并不需要像普通的动态规划那样保留之前所有的计算结果,只需要保留上一次的即可,因此算法的时间和空间复杂度都很小
class Solution(object):
def maxSubArray(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
if len(nums) == 0:
return 0
for i in range(1,len(nums)):
current_num=max(nums[i]+nums[i-1],nums[i])
nums[i]=current_num
return max(nums)