LeetCodeWithPython 53.最大子序列和

题目地址

https://leetcode-cn.com/problems/maximum-subarray/

题目描述

给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

示例:

输入: [-2,1,-3,4,-1,2,1,-5,4],
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。

进阶:

如果你已经实现复杂度为 O(n) 的解法,尝试使用更为精妙的分治法求解。

代码初步

拿到题目,首先想到的还是暴力解法,emmm 掩面哭泣。

  • 思路:

第一层for循环,从头到尾遍历的选出一个元素作为起点,然后第二层for循环,从头到尾遍历的选出一个元素作为终点,第三层for循环,两点之间追加求和

  • 问题:
    刚开始自己做得时候,想着用两层for循环,但是就有一种情况始终cover不了,就是当最大和为最后一个数字时,后来参考了一下别人的解法,得到了下面的算法。
class Solution(object):
    def maxSubArray(self, nums):
        """
        :type nums: List[int]
        :rtype: int
        """
        max = nums[0]
        for i in range(0,len(nums)):
            for j in range(i,len(nums)):
                sum = 0
       # 当最大和为最后一个数字时,两个for循环解决不了问题,因为当i遍历到最后一个数字时,不会进入第2个for循环,也就不会判断max<sum
                for k in range(i,j+1):
                    sum +=nums[k]
                    if max<sum:
                        max = sum
        return max
#s = Solution()
#print(s.maxSubArray([-1,0,-2]))

精简代码

  • 思路:动态规划——时间复杂度O(n)

    设sub[i]为以第i个元素结尾且和最大的连续子数组,假设对于元素i,所有以它前面的元素结尾的子数组的长度都已经求得,那么以第i个元素结尾且和最大的连续子数组实际上,要么是以第i-1个元素结尾且和最大的连续子数组加上这个元素,要么是只包含第i个元素,
    即sub[i]= max(sum[i-1] + a[i], a[i]),可以通过判断sum[i-1] + a[i]是否大于a[i]来做选择,而这实际上等价于判断sum[i-1]是否大于0。由于每次运算只需要前一次的结果,因此并不需要像普通的动态规划那样保留之前所有的计算结果,只需要保留上一次的即可,因此算法的时间和空间复杂度都很小

class Solution(object):
    def maxSubArray(self, nums):
        """
        :type nums: List[int]
        :rtype: int
        """
        if len(nums) == 0:
            return 0
        for i in range(1,len(nums)):
            current_num=max(nums[i]+nums[i-1],nums[i])
            nums[i]=current_num
        return max(nums)

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值