LeetCodeWithPython 104. 二叉树的最大深度

题目地址

https://leetcode-cn.com/problems/maximum-depth-of-binary-tree/

题目描述

在这里插入图片描述

代码初步

  • 思路
    因为二叉树在往下的过程中,有两个结点,左节点和右结点。在下一个节点的选择过程中会不好确定到底是选左边,还是选右边。所以我采用的方法是当二叉树的子节点都不是null时,将左右两个结点分别当成新的结点进行下一轮的循环,最后比较左右两边子数的深度,返回深度大的那个,就是整个二叉树的深度了。
  • 问题:但在实现的过程中提交超时间限制了
# Definition for a binary tree node.
# class TreeNode(object):
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = None

class Solution(object):
    def maxDepth(self, root):
        """
        :type root: TreeNode
        :rtype: int
        """
        LefTree = 1
        RighTree = 1
        if not root:
            return 0
        while root:
            if not root.left and not root.right: # 如果都为空
                break
            elif not root.left and root.right: # 如果左边为空,右边不为空
                RighTree=RighTree+1
                RighTree=self.maxDepth(root.right)
            elif root.left and not root.right: # 如果左边不为空,右边为空
                LefTree=LefTree+1
                LefTree = self.maxDepth(root.left)
            else:
                LefTree = self.maxDepth(root.left)
                RighTree = self.maxDepth(root.right)
        return max(LefTree,RighTree)

在这里插入图片描述

代码欣赏

  • 方法一:递归
    在这里插入图片描述
    复杂度分析
  • 时间复杂度:我们每个结点只访问一次,因此时间复杂度为 O(N), 其中 N是结点的数量。
  • 空间复杂度:在最糟糕的情况下,树是完全不平衡的,例如每个结点只剩下左子结点,递归将会被调用 N 次(树的高度),因此保持调用栈的存储将是 O(N)。但在最好的情况下(树是完全平衡的),树的高度将是 log(N)。因此,在这种情况下的空间复杂度将是 O(log(N))。
# Definition for a binary tree node.
# class TreeNode(object):
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = None

class Solution(object):
    def maxDepth(self, root):
        """
        :type root: TreeNode
        :rtype: int
        """
        if not root:
            return 0
        else:
            LefTree = self.maxDepth(root.left)
            RighTree = self.maxDepth(root.right)
            return max(LefTree,RighTree)+1

在这里插入图片描述

  • 方法二:迭代
    还可以在栈的帮助下将上面的递归转换为迭代。
    我们从包含根结点且相应深度为 1 的栈开始。然后我们继续迭代:将当前结点弹出栈并推入子结点。每一步都会更新深度。

复杂度分析:

  • 时间复杂度:O(N)。
  • 空间复杂度:O(N)。
# Definition for a binary tree node.
# class TreeNode(object):
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = None

class Solution(object):
    def maxDepth(self, root):
        """
        :type root: TreeNode
        :rtype: int
        """ 
        stack=[]
        depth=0
        if root is not None:
        	stack.append((1, root))
        	
        while stack!=[]:
        	current_depth,root=stack.pop()
        	if root is not None:
        		depth = max(depth, current_depth)
        		stack.append((current_depth+1,root.left))
        		stack.append((current_depth+1,root.right))
        return depth

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值