问题描述
给定一个n个顶点,m条边的有向图(其中某些边权可能为负,但保证没有负环)。请你计算从1号点到其他点的最短路(顶点从1到n编号)。
输入格式
第一行两个整数n, m。
接下来的m行,每行有三个整数u, v, l,表示u到v有一条长度为l的边。
输出格式
共n-1行,第i行表示1号点到i+1号点的最短路。
样例输入
3 3
1 2 -1
2 3 -1
3 1 2
样例输出
-1
-2
数据规模与约定
对于10%的数据,n = 2,m = 2。
对于30%的数据,n <= 5,m <= 10。
对于100%的数据,1 <= n <= 20000,1 <= m <= 200000,-10000 <= l <= 10000,保证从任意顶点都能到达其他所有顶点。
import java.util.LinkedList;
import java.util.Queue;
import java.util.Scanner;
public class Main {
static int INF = Integer.MAX_VALUE;
public static void main(String[] args){
Scanner scanner = new Scanner(System.in);
int nodes = scanner.nextInt();
int edges = scanner.nextInt();
if(nodes < 1 || nodes> 20000 || edges < 1 || edges > 200000){
return;
}
int weight[][] = new int[nodes][nodes];
//初始化矩阵
for(int i = 0; i < nodes; i++){
for(int j = 0; j < nodes; j++){
if(i == j){
weight[i][j] = 0;
}else{
weight[i][j] = INF;
}
}
}
for(int i = 0; i < edges; i++){
int start = scanner.nextInt();
int end = scanner.nextInt();
int value = scanner.nextInt();
if(value < -10000 || value > 10000){
return;
}
weight[start - 1][end - 1] = value;
}
int dis[] = new int[nodes]; //存储最短路径的数组
Spfa(nodes, dis, weight);
scanner.close();
}
private static void extracted() {
return;
}
private static void Spfa(int nodes, int[] dis, int[][] weight) {
// TODO Auto-generated method stub
//初始化
for(int i = 0; i < nodes; i++){
dis[i] = INF;
}
//定义一个队列存放顶点
Queue<Integer> queue = new LinkedList<Integer>();
int visited[] = new int[nodes]; //标记该顶点是否遍历过,也就是判断该点是否在队列中
queue.offer(0);
dis[0] = 0;
visited[0] = 1;
while(!queue.isEmpty()){
int out = queue.poll();
for(int i = 0; i < nodes; i++){
//这个式子中可以把out理解成中间节点,dis[out]表示之前的v1点到i点的距离,如果它加上
//现在的中间点到i小于它之前的值,就更新
if(weight[out][i] != INF && dis[i] > dis[out] + weight[out][i]){
dis[i] = dis[out] + weight[out][i];
//如果该点没有进入队列,就加入到队列中,并且被标记遍历
if(visited[i] == 0){
queue.offer(i);
visited[i] = 1;
}
}
}
visited[out] = 0; //因为此时out已经出队列,要更新它为没有遍历过,也就是不在队列中
}
for(int i = 1; i < nodes; i++){
System.out.println(dis[i]);
}
}
}