【学习笔记】网络流算法简单入门

【学习笔记】网络流算法简单入门


【大前言】

网络流是一种神奇的问题,在不同的题中你会发现各种各样的神仙操作。

而且从理论上讲,网络流可以处理所有二分图问题。

二分图和网络流的难度都在于问题建模,一般不会特意去卡算法效率,所以只需要背一两个简单算法的模板就能应付大部分题目了。


\[ QAQ \]


一:【基本概念及性质】

【网络流基本概念】

  • 网络流 \((NetWork\) \(Flow)\) 一种类比水流的解决问题的方法。
    (下述概念均会用水流进行解释)

  • 网络 \((NetWork)\) 可以理解为拥有源点汇点有向图
    (运输水流的水管路线路)

  • \((arc)\) 可以理解为有向边。下文均用 “边” 表示。
    (水管)

  • 弧的流量 \((Flow)\) 简称流量。在一个流量网络中每条边都会有一个流量,表示为 \(f(x,y)\) ,根据流函数 \(f\) 的定义,\(f(x,y)\) 可为负。
    (运输的水流量)

  • 弧的容量 \((Capacity)\) 简称容量。在一个容量网络中每条边都会有一个容量,表示为 \(c(x,y)\)
    (水管规格。即可承受的最大水流量)

  • 源点 \((Sources)\) 可以理解为起点。它会源源不断地放出流量,表示为 \(S\)
    (可无限出水的 \(NB\) 水厂)

  • 汇点 \((Sinks)\) 可以理解为终点。它会无限地接受流量,表示为 \(T\)
    (可无限收集水的 \(NB\) 小区)

  • 容量网络: 拥有源点汇点且每条边都给出了容量网络
    (安排好了水厂,小区和水管规格的路线图)

  • 流量网络: 拥有源点汇点且每条边都给出了流量网络
    (分配好了各个水管水流量的路线图)

  • 弧的残留容量: 简称残留容量。在一个残量网络中每条边都会有一个残留容量 。对于每条边,残留容量 \(=\) 容量 \(-\) 流量。初始的残量网络即为容量网络
    (表示水管分配了水流量后还能继续承受的水流量)

  • 残量网络: 拥有源点汇点且每条边都有残留容量网络残量网络 \(=\) 容量网络 \(-\) 流量网络
    (表示了分配了一定的水流量后还能继续承受的水流量路线图)

关于流量,容量,残留容量的理解见下图:
(用 \(c\) 表示容量,\(f\) 表示流量,\(flow\) 表示残留容量
o_NetWork_1_.png


【网络流三大性质】

  • 容量限制: \(\forall (x,y) \in E,f(x,y) \leqslant c(x,y)\)
    (如果水流量超过了水管规格就爆了呀)

  • 流量守恒: \(\forall x \in V且x \ne S且x \ne T,\sum_{(u,x) \in E}f(u,x) = \sum_{(x,v) \in E}f(x,v)\)
    (对于所有的水管交界处,有多少水流量过来,就应有多少水流量出去,保证水管质量良好不会泄露并且不会无中生有)

  • 斜对称性: \(\forall (x,y) \in E,f(y,x)=-f(x,y)\)
    (可以暂且感性理解为矢量的正负。在网络流问题中,这是非常重要的一个性质)


还有一些其他的概念和性质将在后面补充。


\[ QAQ \]


二:【最大流】

1.【概念补充】

  • 网络的流量: 在某种方案下形成的流量网络汇点接收到的流量值。
    (小区最终接收到的总水流量)

  • 最大流: 网络的流量的最大值。
    (小区最多可接受到的水流量)

  • 最大流网络: 达到最大流流量网络
    (使得小区接收到最多水流量的分配方案路线图)


2.【增广路算法 ( EK )】

【概念补充】
  • 增广路 \((Augmenting\) \(Path)\) 一条在残量网络中从 \(S\)\(T\) 的路径,路径上所有边的残留容量都为正。
    (可以成功从水厂将水送到小区的一条路线)

  • 增广路定理 \((Augmenting\) \(Path\) \(Theorem)\) 流量网络达到最大流当且仅当残量网络中没有增广路
    (无法再找到一路线使得小区获得更多的流量了)

  • 增广路方法 \((Ford-Fulkerson)\) 不断地在残量网络中找出一条从 \(S\)\(T\)增广路,然后根据木桶定律汇点发送流量并修改路径上的所有边的残留容量,直到无法找到增广路为止。该方法的基础为增广路定理,简称 \(FF\) 方法。
    (如果有一条路径可以将水运到小区里就执行,直到无法再运送时终止)

  • 增广路算法 \((Edmonds-Karp)\) 基于增广路方法的一种算法,核心为 \(bfs\) 找最短增广路,并按照 \(FF\) 方法执行操作。增广路算法的出现使得最大流问题被成功解决,简称 \(EK\) 算法。

【算法流程】

下面对 \(EK\) 算法作详细介绍。

\((1).\)\(bfs\) 找到任意一条经过边数最少的最短增广路,并记录路径上各边残留容量的最小值 \(cyf\)(残\(c\)\(y\) \(flow\))。 (木桶定律。众多水管一个也不能爆,如果让最小的刚好不会爆,其它的也就安全了)

\((2).\) 根据 \(cyf\) 更新路径上边及其反向边的残留容量值。答案(最大流)加上 \(cyf\)

\((3).\) 重复 \((1),(2)\) 直至找不到增广路为止。

对于 \((2)\) 中的更新操作,利用链表的特性,从 \(2\) 开始存储,那么 \(3\)\(2\) 就互为一对反向边,\(5\)\(4\) 也互为一对反向边 \(......\)
只需要记录增广路上的每一条边在链表中的位置下标,然后取出来之后用下标对 \(1\) 取异或就能快速得到它的反向边。

【算法理解】

关于建图

在具体实现中,由于增广路是在残量网络中跑的,所以只需要用一个变量 \(flow\) 记录残留容量就足够了,容量流量一般不记录。

为了保证算法的最优性(即网络的流量要最大),可能在为某一条边分配了流量后需要反悔,所以要建反向边。在原图中,正向边的残留容量初始化为容量,反向边的残留容量初始化为 \(0\)(可理解为反向边容量\(0\))。

当我们将边 \((x,y)\)(在原图中可能为正向也可能为反向)的残留容量 \(flow\) 用去了 \(F\) 时,其流量增加了 \(F\)残留容量 \(flow\) 应减少 \(F\)。根据斜对称性,它的反边 \((y,x)\) 流量增加了 \(-F\)残留容量 \(flow'\) 应减去 \(-F\)(即加上 \(F\))。

那么如果在以后找增广路时选择了这一条边,就等价于:将之前流出去的流量的一部分(或者全部)反悔掉了个头,跟随着新的路径流向了其它地方,而新的路径上在到达这条边之前所积蓄的流量 以及 之前掉头掉剩下的流量 则顺着之前的路径流了下去

同理,当使用了反向边 \((y,x)\)残留容量时也应是一样的操作。

还是之前那个图,下面是找到了一条最短增广路 \(1 → 3 → 2 → 4\)(其中三条边均为黑边)后的情况:
(不再显示容量和流量,用 \(flow\) 表示残留容量,灰色边表示原图上的反向边,蓝色小水滴表示水流量)
o_NetWork_2_.png

然后是第二条最短增广路 \(1 → 7 → 6 → 2 \dashrightarrow 3 → 8 → 5 → 4\)(其中 \(f(2,3)\)灰边,其余均为黑边,紫色小水滴表示第二次新增的水流量):
o_NetWork_3_.png

注:由于在大部分题目中都不会直接使用容量和流量,所以通常会直接说某某之间连一条流量为某某的边,在没有特别说明的情况下,其要表示的含义就是残留容量。后面亦不再强调“残留”,直接使用“流量”。

【时间复杂度分析】

每条边最多会被增广 \(O(\frac{n}{2}-1)\) 次(证明),一共 \(m\) 条边,总增广次数为 \(nm\)
一次 \(bfs\) 增广最坏是 \(O(m)\) 的,\(bfs\) 之后更新路径上的信息最坏为 \(O(n)\)(可忽略)。
最坏时间复杂度为:\(O(nm^2)\)

实际应用中效率较高,一般可解决 \(10^4\) 以内的问题。

【Code】
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<queue>
#define Re register int
using namespace std;
const int N=1e4+3,M=1e5+3,inf=2e9;
int x,y,z,o=1,n,m,h,t,st,ed,maxflow,Q[N],cyf[N],pan[N],pre[N],head[N];
struct QAQ{int to,next,flow;}a[M<<1];
inline void in(Re &x){
    int f=0;x=0;char c=getchar();
    while(c<'0'||c>'9')f|=c=='-',c=getchar();
    while(c>='0'&&c<='9')x=(x<<1)+(x<<3)+(c^48),c=getchar();
    x=f?-x:x;
}
inline void add(Re x,Re y,Re z){a[++o].flow=z,a[o].to=y,a[o].next=head[x],head[x]=o;}
inline int bfs(Re st,Re ed){
    for(Re i=0;i<=n;++i)pan[i]=0;
    h=1,t=0,pan[st]=1,Q[++t]=st,cyf[st]=inf;//注意起点cfy的初始化
    while(h<=t){
        Re x=Q[h++];
        for(Re i=head[x],to;i;i=a[i].next)
            if(a[i].flow&&!pan[to=a[i].to]){//增广路上的每条边残留容量均为正
                cyf[to]=min(cyf[x],a[i].flow);
                //用cyf[x]表示找到的路径上从S到x途径边残留容量最小值
                Q[++t]=to,pre[to]=i,pan[to]=1;//记录选择的边在链表中的下标
                if(to==ed)return 1;//如果达到终点,说明最短增广路已找到,结束bfs
            }
    }
    return 0;
}
inline void EK(Re st,Re ed){
    while(bfs(st,ed)==1){
        Re x=ed;maxflow+=cyf[ed];//cyf[ed]即为当前路径上边残留容量最小值
        while(x!=st){//从终点开始一直更新到起点
            Re i=pre[x];
            a[i].flow-=cyf[ed];
            a[i^1].flow+=cyf[ed];
            x=a[i^1].to;//链表特性,反向边指向的地方就是当前位置的父亲
        }
    }
}
int main(){
    in(n),in(m),in(st),in(ed);
    while(m--)in(x),in(y),in(z),add(x,y,z),add(y,x,0);
    EK(st,ed);
    printf("%d",maxflow);
}

3.【Dinic】

\(EK\) 算法中,每一次 \(bfs\) 最坏可能会遍历整个残量网络,但都只会找出一条最短增广路

那么如果一次 \(bfs\) 能够找到多条最短增广路,速度嗖~嗖~地就上去了。

\(Dinic\) 算法便提供了该思路的一种实现方法。

网络流的算法多且杂,对于初学者来说,在保证效率的前提下优化\(Dinic\)应该是最好写的一种了。

【算法流程】

\((1).\) 根据 \(bfs\) 的特性,找到 \(S\) 到每个点的最短路径(经过最少的边的路径),根据路径长度对残量网络进行分层,给每个节点都给予一个层次,得到一张分层图

\((2).\) 根据层次反复 \(dfs\) 遍历残量网络,一次 \(dfs\) 找到一条增广路并更新,直至跑完能以当前层次到达 \(T\) 的所有路径。

【多路增广】

可以发现,一次 \(bfs\) 会找到 \([1,m]\)增广路,大大减少了 \(bfs\) 次数,但 \(dfs\) 更新路径上的信息仍是在一条一条地进行,效率相较于 \(EK\) 并没有多大变化。

为了做到真正地多路增广,还需要进行优化。
\(dfs\) 时对于每一个点 \(x\),记录一下 \(x \rightsquigarrow T\) 的路径上往后走已经用掉的流量,如果已经达到可用的上限则不再遍历 \(x\) 的其他边,返回在 \(x\) 这里往后所用掉的流量,回溯更新 \(S \rightsquigarrow x\) 上的信息。
如果到达汇点则返回收到的流量,回溯更新 \(S \rightsquigarrow T\) 上的信息。

【当前弧优化】

原理:在一个分层图当中,\(\forall x \in V\),任意一条从 \(x\) 出发处理结束的边(弧),都成了 “废边”,在下一次到达 \(x\) 时不会再次使用。
(水管空间已经被榨干净了,无法再通过更多的水流,直接跳过对这些边的无用遍历)

实现方法:用数组 \(cur[x]\) 表示上一次处理 \(x\) 时遍历的最后一条边(即 \(x\) 的当前弧),其使用方法与链表中的 \(head\) 相同,只是 \(cur\) 会随着图的遍历不断更新。由于大前提是在一个分层图当中,所以每一次 \(bfs\) 分层后都要将 \(cur\) 初始化成 \(head\)

特别的,在稠密图中最能体现当前弧优化的强大。

【时间复杂度分析】

最坏时间复杂度为:\(O(n^2m)\)。(看不懂的证明

(特别的,对于二分图\(Dinic\) 最坏时间复杂度为 \(m\sqrt{n}\)

实际应用中效率较高,一般可解决 \(10^5\) 以内的问题。

【Code】

#include<algorithm>
#include<cstring>
#include<cstdio>
#include<queue>
#define Re register int
using namespace std;
const int N=1e4+3,M=1e5+3,inf=2147483647;
int x,y,z,o=1,n,m,h,t,st,ed,Q[N],cur[N],dis[N],head[N];long long maxflow;
struct QAQ{int to,next,flow;}a[M<<1];
inline void in(Re &x){
    int f=0;x=0;char c=getchar();
    while(c<'0'||c>'9')f|=c=='-',c=getchar();
    while(c>='0'&&c<='9')x=(x<<1)+(x<<3)+(c^48),c=getchar();
    x=f?-x:x;
}
inline void add(Re x,Re y,Re z){a[++o].flow=z,a[o].to=y,a[o].next=head[x],head[x]=o;}
inline int bfs(Re st,Re ed){//bfs求源点到所有点的最短路
    for(Re i=0;i<=n;++i)cur[i]=head[i],dis[i]=0;//当前弧优化cur=head
    h=1,t=0,dis[st]=1,Q[++t]=st;
    while(h<=t){
        Re x=Q[h++],to;
        for(Re i=head[x];i;i=a[i].next)
            if(a[i].flow&&!dis[to=a[i].to]){
                dis[to]=dis[x]+1,Q[++t]=to;
                if(to==ed)return 1;
            }
    }
    return 0;
}
inline int dfs(Re x,Re flow){//flow为剩下可用的流量
    if(!flow||x==ed)return flow;//发现没有流了或者到达终点即可返回
    Re tmp=0,to,f;
    for(Re i=cur[x];i;i=a[i].next){
        cur[x]=i;//当前弧优化cur=i
        if(dis[to=a[i].to]==dis[x]+1&&(f=dfs(to,min(flow-tmp,a[i].flow)))){
//若边权为0,不满足增广路性质,或者跑下去无法到达汇点,dfs返回值f都为0,不必执行下面了
            a[i].flow-=f,a[i^1].flow+=f;
            tmp+=f;//记录终点已经从x这里获得了多少流
            if(!(flow-tmp))break;
//1. 从st出来流到x的所有流被榨干。后面的边都不用管了,break掉。
//而此时边i很可能还没有被榨干,所以cur[x]即为i。
//2. 下面儿子的容量先被榨干。不会break,但边i成了废边。
//于是开始榨x的下一条边i',同时cur[x]被更新成下一条边i'
//直至榨干从x上面送下来的水流结束(即情况1)。
        }
    }
    return tmp;
}
inline void Dinic(Re st,Re ed){
    Re flow=0;
    while(bfs(st,ed))maxflow+=dfs(st,inf);
}
int main(){
    in(n),in(m),in(st),in(ed);
    while(m--)in(x),in(y),in(z),add(x,y,z),add(y,x,0);
    Dinic(st,ed);
    printf("%lld",maxflow);
}

4.【ISAP】

\(To\) \(be\) \(continued...\)


5.【HLLP】

神奇的预流推进。。。

\(To\) \(be\) \(continued...\)


4.【算法效率测试】

因为网络流算法的时间复杂度都不太好分析,所以用实际的题目来感受一下。

【测试一】

题目:最大流 \([Loj101]\)

参测算法:

\((1).EK:\)
nKlmeU.png

\((2).Dinic\) \(+\) 多路增广(喵?喵?喵?居然卡 \(Dinic\)!)\(:\)
nKHh5t.png

\((3).Dinic\) \(+\) 多路增广 \(+\) 当前弧优化 \(:\)
nKHqbj.png

【测试二】

题目:【模板】二分图匹配 \([P3386]\)

参测算法:

\((1).EK:\)
nMqUPI.pngnMqJVH.png

\((2).Dinic\) \(+\) 多路增广 \(+\) 当前弧优化 \(:\)
nMqrqg.pngnMq6aj.png

\((3).\) 匈牙利算法\(QAQ\) 好像混入了奇怪的东西)\(:\)
nMqWR0.pngnMq6aj.png

\(To\) \(be\) \(continued...\)


5.【例题】


\[ QAQ \]


三:【有上下界的最大流】

\(To\) \(be\) \(continued...\)


\[ QAQ \]


四:【最小割】

1.【概念补充】

  • 网络的割集\((Network\) \(Cut\) \(Set)\) 把一个源点\(S\)汇点\(T\)网络中的所有点划分成两个点集 \(s\)\(t\)\(S \in s,T \in t\),由 \(x \in s\) 连向 \(y \in t\) 的边的集合称为割集。可简单理解为:对于一个源点\(S\)汇点\(T\)网络,若删除一个边集 \(E’ \subseteq E\) 后可以使 \(S\)\(T\) 不连通,则成 \(E’\) 为该网络的一个割集
    (有坏人不想让小区通水,用锯子割掉了一些边)

  • 最小割 \((Minimum\) \(Cut)\) 在一个网络中,使得边容量之和最小的割集
    (水管越大越难割,坏人想要最节省力气的方案)

  • 最大流最小割定理:\((Maximum\) \(Flow,Minimum\) \(Cut\) \(Theorem)\) 任意一个网络中的最大流等于最小割【证明】
    (可以感性理解为:最大流网络中一定是找出了所有的可行路径,将每条路径上都割掉一条边就能保证 \(S,T\) 一定不连通,在此前提下每条路径上都割最小的边,其等价于最大流)


2.【最大权闭合子图】

\(To\) \(be\) \(continued...\)


3.【例题】


\[ QAQ \]


六:【费用流】

1.【概念补充】

  • 单位流量的费用 \((Cost)\) 简称单位费用。顾名思义,一条边的费用 \(=\) 流量 \(\times\) 单位费用。表示为 \(w(x,y)\)
    (每根水管运一份水的花费。与\(“\)残留容量\(”\)的简化类似,通常直接称\(“\)费用\(”\)

  • 最小费用最大流:最大流网络中,使得总费用最小。
    (在运最多水的前提下,花钱最少)


2.【EK】

【算法流程】

只需将最大流 \(EK\) 算法中的流程 \((1)\) \(“\) \(bfs\) 找到任意一条最短增广路 \(”\) 改为 \(“\) \(Spfa\) 找到任意一条单位费用之和最小的增广路 \(”\),即可得到最小费用最大流

特别的,为了提供反悔机会,原图中 \(\forall (x,y) \in E\) 的反向边单位费用应为 \(-w(x,y)\) 。(为什么不用 \(dijkstra\)?原因就在这里啊!)

【Code】
#include<algorithm>
#include<cstdio>
#include<queue>
#define LL long long
#define Re register int
using namespace std;
const int N=5003,M=5e4+3,inf=2e9;
int x,y,z,w,o=1,n,m,h,t,st,ed,cyf[N],pan[N],pre[N],dis[N],head[N];LL mincost,maxflow; 
struct QAQ{int w,to,next,flow;}a[M<<1];queue<int>Q;
inline void in(Re &x){
    int f=0;x=0;char c=getchar();
    while(c<'0'||c>'9')f|=c=='-',c=getchar();
    while(c>='0'&&c<='9')x=(x<<1)+(x<<3)+(c^48),c=getchar();
    x=f?-x:x;
}
inline void add(Re x,Re y,Re z,Re w){a[++o].flow=z,a[o].w=w,a[o].to=y,a[o].next=head[x],head[x]=o;}
inline void add_(Re a,Re b,Re flow,Re w){add(a,b,flow,w),add(b,a,0,-w);}
inline int SPFA(Re st,Re ed){
    for(Re i=0;i<=ed;++i)dis[i]=inf,pan[i]=0;
    Q.push(st),pan[st]=1,dis[st]=0,cyf[st]=inf;
    while(!Q.empty()){
        Re x=Q.front();Q.pop();pan[x]=0;
        for(Re i=head[x],to;i;i=a[i].next)
            if(a[i].flow&&dis[to=a[i].to]>dis[x]+a[i].w){
                dis[to]=dis[x]+a[i].w,pre[to]=i;
                cyf[to]=min(cyf[x],a[i].flow);
                if(!pan[to])pan[to]=1,Q.push(to);
            }
    }
    return dis[ed]!=inf;
}
inline void EK(Re st,Re ed){
    while(SPFA(st,ed)){
        Re x=ed;maxflow+=cyf[ed],mincost+=(LL)cyf[ed]*dis[ed];
        while(x!=st){//和最大流一样的更新
            Re i=pre[x];
            a[i].flow-=cyf[ed];
            a[i^1].flow+=cyf[ed];
            x=a[i^1].to;
        }
    }
}
int main(){
    in(n),in(m),in(st),in(ed);
    while(m--)in(x),in(y),in(z),in(w),add_(x,y,z,w);
    EK(st,ed);
    printf("%lld %lld",maxflow,mincost);
}

3.【Primal-Dual】

\(To\) \(be\) \(continued...\)


4.【ZKW 算法】

\(To\) \(be\) \(continued...\)


5.【算法效率测试】

\(To\) \(be\) \(continued...\)


6.【例题】


\[ QAQ \]


七:【常见问题模型】

\(To\) \(be\) \(continued...\)


\[ QAQ \]


八:【参考文献】

转载于:https://www.cnblogs.com/Xing-Ling/p/11487554.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值