tensorflow
Berlin-98
这个作者很懒,什么都没留下…
展开
-
tf.Variable()与tf.get_variable()的区别
关于tf.Variable()与tf.get_variable()的区别,很多博客都在罗列传入参数的不同,然后推荐使用tf.get_variable(),因为更适合复用。本人才疏学浅,看不出参数不同怎么就会影响复用。通过阅读这篇博客,加以自己的理解,阐述两者的区别和为何tf.get_variable()更适合参数复用。tf.Variable()对于tf.Variable()定义的变量,如x = tf.Variable(3, name="x")。当多次调用x时,系统会自动给变量编号x,x_1,x_2来解决原创 2020-07-13 10:35:07 · 550 阅读 · 0 评论 -
tensorflow通过checkpoint恢复模型参数
前情提要:在模型训练过程中通过dev进行验证,寻找最优的参数组合。在训练结束后选择最优dev的情况进行测试。可通过Saver进行保存,而后恢复的方法,常见的恢复方法有两种:1.通过restore函数进行恢复;2.通过加载meta的方法恢复图模型。本文记录Re2模型中使用的第三种方法:通过checkpoint恢复部分参数,并使用该参数重新实例化model对象,而后进行验证。该方法适用于模块化较强的大...原创 2020-03-01 17:46:06 · 1991 阅读 · 0 评论 -
tensorflow中compute_gradients()、clip_by_value()与apply_gradients()
前情提要:本人在使用Wasserstein距离进行距离分布的训练时,按照WGAN的原文,“建议不要用基于动量的优化算法(包括momentum和Adam),推荐RMSProp”,同时为了满足Lipschitz连续条件,具体在算法实现中,需要每次更新完后把所有参数clip到某一范围,如[-c,c]。因此在具体实现过程中的基本思路:使用compute_gradients()计算梯度,使用clip将参数...原创 2020-02-28 21:46:29 · 1497 阅读 · 0 评论