#! /usr/bin/python
# -*- coding: utf-8 -*-
# 导入pandas模块
import pandas
def num_operation():
# 读取excel文件,定位sheet页
df = pandas.read_excel("./cs.xlsx", sheet_name="百分比求平均")
# ------------------------------------------------------------------------
# print(df)
# 计算第1行的和
sum_row = df["gpu_load"].head(1).sum()
print(sum_row)
# 计算gpu_load列的和
sum_col = df["gpu_load"].sum()
print(sum_col)
# 计算gpu_load列的最小值
min_col = df["gpu_load"].min()
print(min_col)
# 计算gpu_load列的最大值
max_col = df["gpu_load"].max()
print(max_col)
# ----------------------------------------------------------------------------
# 计算gpu_load列的平均值
mean_col = df["gpu_load"].mean()
ave_column = '%.2f%%' % (mean_col * 100)
print(ave_column)
write_excel(ave_column, min_col)
def write_excel(ave_column, min_col):
# 将平均值写入new-cs.xlsx中
python进行excel表格数据运算脚本
最新推荐文章于 2024-09-21 17:07:03 发布
本文介绍如何利用Python的pandas库进行高效的数据运算,包括读取Excel文件,进行数据清洗、分析和计算,最后将结果保存回Excel表格,为Excel数据处理提供强大的脚本支持。
摘要由CSDN通过智能技术生成