图算法

基本图算法

广度优先搜索(BFS)

BFS解决图的连通问题(杭电15年复试真题)

//用BFS计算矩阵中连通块数
import java.util.Queue;
import java.util.Scanner;
import java.util.LinkedList;
public class Main {
	static int m, n;//m*n的矩阵
	static int num[][];//存放矩阵内容
	static int X[], Y[];//控制枚举四个方向
	static boolean inq[][];//标记是否进过队列

	public static void main(String[] args) {
		Scanner in = new Scanner(System.in);
		m = in.nextInt();
		n = in.nextInt();
		num=new int[m][n];
		for (int i = 0; i < m; i++)
			for (int j = 0; j < n; j++)
				num[i][j] = in.nextInt();
		X = new int[4];
		Y = new int[4];
		X[0] = 0;
		X[1] = 0;
		X[2] = 1;
		X[3] = -1;
		Y[0] = 1;
		Y[1] = -1;
		Y[2] = 0;
		Y[3] = 0;
		inq = new boolean[m][n];
		for (int i = 0; i < m; i++)
			for (int j = 0; j < n; j++)
				inq[i][j] = false;
		int ans = 0;
		for (int x = 0; x < m; x++) {
			for (int y = 0; y < n; y++) {
				if (num[x][y] == 1 && inq[x][y] == false) {
					ans++;//连通块数
					BFS(x, y);//广度优先遍历算法
				}
			}
		}
		System.out.println(ans);
	}

	private static void BFS(int x, int y) {
		Queue<Node> Q=new LinkedList<Node>();
		Node node = new Node(x, y);
		Q.offer(node);//入队
		inq[x][y] = true;//标记入队
		while (!Q.isEmpty()) {
			Node top = Q.peek();//取出队首元素
			Q.poll();//队首元素出队
			for (int i = 0; i < 4; i++) {
				int newX = top.x + X[i];
				int newY = top.y + Y[i];
				if (judge(newX, newY)) {//判断是否出界或者是否访问

过
					node = new Node(newX, newY);
					Q.offer(node);
					inq[newX][newY] = true;
				}
			}
		}
	}

	private static boolean judge(int x, int y) {
		if (x >= m || x < 0 || y >= n || y < 0)
			return false;
		if(num[x][y]==0||inq[x][y]==true)
			return false;
		return true;
	}

}

class Node {
	int x, y;

	public Node(int x, int y) {
		this.x = x;
		this.y = y;
	}
}//x,y分别表示节点的横纵坐标

BFS算法用于迷宫求解问题(最小步数)

import java.util.LinkedList;
import java.util.Queue;	
import java.util.Scanner;
public class Main{
	static int n,m;
	static char ch[][];
	static int X[];
	static int Y[];
	static boolean inq[][];//元素是否已如果队 不是元素是否依被访问过
	static Node S,T,node;
	public static void main(String[] args) {
		Scanner in=new Scanner(System.in);
		n=in.nextInt();
		m=in.nextInt();
		ch=new char[n][m];
		for(int x=0;x<n;x++) {
			String str=in.next();
			for(int y=0;y<m;y++) {
				ch[x][y]=str.charAt(y);
			}
		}
		S=new Node(in.nextInt(),in.nextInt(),0);
		T=new Node(in.nextInt(),in.nextInt());
		node=new Node();
		X=new int[4];
		Y=new int[4];
		X[0]=0;
		X[1]=0;
		X[2]=1;
		X[3]=-1;
		Y[0]=1;
		Y[1]=-1;
		Y[2]=0;
		Y[3]=0;
		inq=new boolean[n][m];
		inq[S.x][S.y]=true;
		int ans=0;
		ans=BFS();
		System.out.println(ans);	
		
	}
	private static int BFS() {
	Queue<Node>Q=new LinkedList<Node>();
	Q.offer(S);
	while(!Q.isEmpty()) {
		Node top=Q.peek();
		Q.poll();
		if(top.x==T.x&&top.y==T.y)
			return top.step;
		for(int i=0;i<4;i++) {
			int newX=top.x+X[i];
			int newY=top.y+Y[i];
			if(test(newX,newY)) {
				node=new Node(newX,newY,top.step+1);
				Q.offer(node);
				inq[newX][newY]=true;	
			}
		}
	}
	return -1;		
 }
	private static boolean test(int x, int y) {
		if(x<0||x>=n||y<0||y>=m)
			return false;
		if(ch[x][y]=='*'||inq[x][y]==true)
			return false;
		return true;
	}
}
class Node{
	int x,y;
	int step;
	public Node(int x,int y){
		this.x=x;
		this.y=y;
	}
	public Node(int x,int y,int step){
		this.x=x;
		this.y=y;
		this.step=step;
	}
	public Node() {
		
	}
}

深度优先搜寻(DFS)

Travel Plan问题(PAT A1030)(DFS+Dijkstra)

import java.util.Scanner;
public class Main{
	static int n,m,st,de,k;
	static int INF=1000000000;
	static int G[][],Weight[][];
	static int d[],w[];
	static boolean vis[];
	static int pre[];//存放路径
	public static void main(String[] args) {
		Scanner in=new Scanner(System.in);
		n=in.nextInt();
		m=in.nextInt();
		st=in.nextInt();
		de=in.nextInt();
		G=new int[n][n];
		Weight=new int[n][n];
		w=new int[n];
		d=new int[n];
		pre=new int[n];
		k=0;
		vis=new boolean[n];
		for(int i=0;i<n;i++)
			for(int j=0;j<n;j++) {
				G[i][j]=INF;
			}
		int c1,c2,a,b;
		for(int i=0;i<m;i++) {
			c1=in.nextInt();
			c2=in.nextInt();
			a=in.nextInt();
			b=in.nextInt();
			G[c1][c2]=a;
			Weight[c1][c2]=b;
		}
		Dijkstra(st);
		DFS(de);
		System.out.printf("%d %d",d[de],w[de]);
	}
	private static void Dijkstra(int s) {
		for(int i=0;i<n;i++)
			d[i]=INF;
		d[s]=0;
		for(int i=0;i<n;i++)
			w[i]=INF;
		w[s]=0;
		for(int i=0;i<n;i++) {
			int u=-1;
			int min=INF;
			for(int j=0;j<n;j++) {
				if(vis[j]==false&&d[j]<min) {
					u=j;
					min=d[j];
				}
			}
			if(u==-1)
				return;
			vis[u]=true;
			for(int v=0;v<n;v++) {
				if(vis[v]==false&&G[u][v]!=INF) {
					if(d[u]+G[u][v]<d[v]) {
						d[v]=d[u]+G[u][v];
						w[v]=w[u]+Weight[u][v];
						pre[v]=u;
					}
					else if(d[u]+G[u][v]==d[v]) {
							if(w[u]+Weight[u][v]<w[v]) {
								w[v]=w[u]+Weight[u][v];
								pre[v]=u;
						}
					}
				}
			}
		}	
	}
	static void DFS(int v) {
		if(v==st) {
			System.out.printf("%d ",v);
			return;
		}
		DFS(pre[v]);
		System.out.printf("%d ",v);
	}
}

最小生成树

Prim算法

算法思路基本同Dijkstra算法 只是d[]数组的含义不同

import java.util.Scanner;
public class Main{
	static int n,m;
	static int G[][];
	static int d[];
	static int INF=1000000000;
	static boolean vis[];
	public static void main(String[] args) {
		Scanner in=new Scanner(System.in);
		n=in.nextInt();
		m=in.nextInt();
		G=new int[n][n];
		d=new int[n];
		vis=new boolean[n];
		for(int i=0;i<n;i++)
			for(int j=0;j<n;j++)
				G[i][j]=INF;
		for(int i=0;i<m;i++) {
			int u=in.nextInt();
			int v=in.nextInt();
			int w=in.nextInt();
			G[u][v]=w;
			G[v][u]=w;//无向图
		}
		int ans=prim();
		System.out.println(ans);
	}
	public static int prim() {
		for(int i=0;i<n;i++)
			d[i]=INF;
		d[0]=0;
		int ans=0;
		for(int i=0;i<n;i++) {
			int u=-1;
			int MIN=INF;
			for(int j=0;j<n;j++) {
				if(vis[j]==false&&d[j]<MIN) {
					u=j;
					MIN=d[j];
				}
			}
			if(u==-1)
				return -1;
			vis[u]=true;
			ans+=d[u];//ans表示权值
			for(int v=0;v<n;v++) {
				if(vis[v]==false&&G[u][v]!=INF&&G[u][v]<d[v])
					d[v]=G[u][v];
			}
		}
		return ans;
	}
}

Kruskal算法

import java.util.Arrays;
import java.util.Comparator;
import java.util.Scanner;
public class Main{
	static int n,m;
	static int father[];//并查集
	static Edge e[];
	public static void main(String[] args) {
		Scanner in=new Scanner(System.in);
		n=in.nextInt();
		m=in.nextInt();
		e=new Edge[m];
		father=new int[n];
		for(int i=0;i<m;i++) {
			int u=in.nextInt();
			int v=in.nextInt();
			int w=in.nextInt();
			e[i]=new Edge(u,v,w);	//边类的构造方法
		}
		int ans=kruskal(n,m);//kruskal算法的入口
		System.out.println(ans);	
	}
	private static int kruskal(int n, int m) {
		int ans=0;//权值
		int Num_Edge=0;//目前的最小生成树的边数
		for(int i=0;i<n;i++)
			father[i]=i;//初始化并查集
		Arrays.sort(e, new Comparator<Edge>() {
			@Override
			public int compare(Edge o1,Edge o2) {//o2是第一个 o1是第二个
				if(o1.cost>o2.cost) return 1;//第二个大于第一个时 true 故是从小到大
				else return -1;
			}
		});//自定义类排序(从小到大)
		for(int i=0;i<m;i++) {
			int faU=findFather(e[i].u);
			int faV=findFather(e[i].v);
			if(faU!=faV) {
				father[faU]=faV;
				ans+=e[i].cost;
				Num_Edge++;
				if(Num_Edge==n-1) break;
			}
		}
		if(Num_Edge!=n-1) return -1;
		else return ans;
	}
	private static int findFather(int x) {
		int a=x;
		while(x!=father[x]) {
			x=father[x];
		}
		while(a!=father[a]) {
			int z=a;
			a=father[a];
			father[z]=x;
		}//路径压缩
		return x;
	}
}
class Edge{
	int u,v;
	int cost;
	public Edge(int u,int v,int cost) {
		this.u=u;
		this.v=v;
		this.cost=cost;
	}
}

最短路径

Dijkstra算法

import java.util.Scanner;
public class Main{
	static int INF=1000000000;
	static int G[][];
	static int n,m,s;
	static int d[];
	static boolean vis[];
	public static void main(String[] args) {
		Scanner in=new Scanner(System.in);
		int u,v,w;
		n=in.nextInt();//n个顶点
		G=new int[n][n];
		d=new int[n];
		vis=new boolean[n];
		m=in.nextInt();//m条边
		s=in.nextInt();//起点
		for(int i=0;i<n;i++)
			for(int j=0;j<n;j++)
				G[i][j]=INF;
		for(int i=0;i<m;i++) {
				u=in.nextInt();//边的顶点
				v=in.nextInt();//边的终点
				w=in.nextInt();//边的权重
				G[u][v]=w;//存入矩阵
		}
		Dijkstra(s);//从起点s开始调用Dijkstra算法
		for(int i=0;i<n;i++)
			System.out.printf("%d ",d[i]);
	}
	public static void Dijkstra(int s) {
		for(int i=0;i<n;i++)
			d[i]=INF;
		d[s]=0;
		for(int i=0;i<n;i++) {
			int u=-1;
			int MIN=INF;
			for(int j=0;j<n;j++) {
				if(vis[j]==false&&d[j]<MIN) {//找到未访问的顶点中

d[]最小的
					u=j;
					MIN=d[j];
				}
			}
			if(u==-1)
				return;
			vis[u]=true;
			for(int v=0;v<n;v++) {
				if(vis[v]==false&&G[u][v]!=INF&&d[u]+G[u][v]<d[v])
					d[v]=d[u]+G[u][v];//优化d[v]
			}
		}
	}
}

Emergency(Dijkstra)(PAT A1003)

import java.util.Scanner;
public class Main{
	static int n,m,c1,c2;
	static int d[],w[],num[],weight[];//num 最短路径数 w最大权值
	static boolean vis[];
	static int G[][];
	static int INF=1000000000;
	public static void main(String[] args) {
		Scanner in=new Scanner(System.in);
		int u,v,l;
		n=in.nextInt();
		m=in.nextInt();
		c1=in.nextInt();
		c2=in.nextInt();
		d=new int[n];
		vis=new boolean[n];
		w=new int[n];
		num=new int[n];
		weight=new int[n];
		G=new int[n][n];
		for(int i=0;i<n;i++)
			for(int j=0;j<n;j++)
				G[i][j]=INF;
		for(int i=0;i<n;i++)
			weight[i]=in.nextInt();
		for(int i=0;i<m;i++) {
			u=in.nextInt();
			v=in.nextInt();
			l=in.nextInt();
			G[u][v]=l;
		}
		Dijkstra(c1);
		System.out.printf("%d %d",num[c2],w[c2]);	
	}
	private static void Dijkstra(int s) {
		for(int i=0;i<n;i++)
			d[i]=INF;
		d[s]=0;
		for(int i=0;i<n;i++)
			num[i]=0;
		num[s]=1;
		for(int i=0;i<n;i++)
			w[i]=0;
		w[s]=weight[s];
		for(int i=0;i<n;i++) {
			int u=-1;
			int min=INF;
			for(int j=0;j<n;j++) {
				if(vis[j]==false&&d[j]<min) {
					u=j;
					min=d[j];
				}
			}
			if(u==-1)
				return;
			vis[u]=true;
			for(int v=0;v<n;v++) {
				if(vis[v]==false&&G[u][v]!=INF) {
					if(d[u]+G[u][v]<d[v]) {
					  d[v]=d[u]+G[u][v];
					  w[v]=w[u]+weight[v];
					  num[v]+=num[u];
					}
					else if(d[u]+G[u][v]==d[v]) {
						if(w[u]+weight[v]>w[v]) {
							w[v]=w[u]+weight[v];
						}
						num[v]+=num[u];
					}
				}
			}
		}
	}
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值