题目描述
任何一个正整数都可以用2的幂次方表示。例如
137=2^7+2^3+2^0
同时约定方次用括号来表示,即a^b 可表示为a(b)。
由此可知,137可表示为:
2(7)+2(3)+2(0)
进一步:7= 2^2+2+2^0 (2^1用2表示)
3=2+2^0
所以最后137可表示为:
2(2(2)+2+2(0))+2(2+2(0))+2(0)
又如:
1315=2^10 +2^8 +2^5 +2+1
所以1315最后可表示为:
2(2(2+2(0))+2)+2(2(2+2(0)))+2(2(2)+2(0))+2+2(0)
输入输出格式
输入格式:一个正整数n(n≤20000)。
输出格式:符合约定的n的0,2表示(在表示中不能有空格)
输入输出样例
递归+分治
每个指数也当做参数进行分治。
#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<string>
using namespace std;
string ans;
string print(int n)
{
int i = 0; string s;
while (n)
{
if (n & 1)
{
//1.如果n>>1不是0就可以添加“+”
//2.如果指数i=1,就只加上一个"2",否则继续判断:如果i=0,加上"2(0)",如果连这都不符合,就加上"2("+print(i)+")"
s = (n >> 1 ? "+" : "") + (i == 1 ? "2" : i == 0 ? "2(0)" : "2(" + print(i) + ")") + s;
}
n >>= 1; i++;
}
return s;
}
int main()
{
int n;
cin >> n;
cout<< print(n)<<endl;
return 0;
}