洛谷P2123 皇后游戏

版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/weixin_38199770/article/details/80155662

题目背景

还记得 NOIP 2012 提高组 Day1 的国王游戏吗?时光飞逝,光阴荏苒,两年

过去了。国王游戏早已过时,如今已被皇后游戏取代,请你来解决类似于国王游

戏的另一个问题。

题目描述

皇后有 n 位大臣,每位大臣的左右手上面分别写上了一个正整数。恰逢国庆

节来临,皇后决定为 n 位大臣颁发奖金,其中第 i 位大臣所获得的奖金数目为第

i-1 位大臣所获得奖金数目与前 i 位大臣左手上的数的和的较大值再加上第 i 位

大臣右手上的数。

形式化地讲:我们设第 i 位大臣左手上的正整数为 ai,右手上的正整数为 bi,

则第 i 位大臣获得的奖金数目为 ci可以表达为:

当然,吝啬的皇后并不希望太多的奖金被发给大臣,所以她想请你来重新安

排一下队伍的顺序,使得获得奖金最多的大臣,所获奖金数目尽可能的少。

注意:重新安排队伍并不意味着一定要打乱顺序,我们允许不改变任何一

位大臣的位置。

输入输出格式

输入格式:

第一行包含一个正整数 T,表示测试数据的组数。

接下来 T 个部分,每个部分的第一行包含一个正整数 n,表示大臣的数目。

每个部分接下来 n 行中,每行两个正整数,分别为 ai和 bi,含义如上文所述。

输出格式:

共 T 行,每行包含一个整数,表示获得奖金最多的大臣所获得的奖金数目。

输入输出样例

输入样例#1: 复制
1
3
4 1
2 2
1 2
输出样例#1: 复制
8






输入样例#2: 复制
2
5
85 100
95 99
76 87
60 97
79 85
12
9 68
18 45
52 61
39 83
63 67
45 99
52 54
82 100
23 54
99 94
63 100
52 68
输出样例#2: 复制
528
902




说明
















说明

按照 1、2、3 这样排列队伍,获得最多奖金的大臣获得奖金的数目为 10;

按照 1、3、2 这样排列队伍,获得最多奖金的大臣获得奖金的数目为 9;

按照 2、1、3 这样排列队伍,获得最多奖金的大臣获得奖金的数目为 9;

按照 2、3、1 这样排列队伍,获得最多奖金的大臣获得奖金的数目为 8;

按照 3、1、2 这样排列队伍,获得最多奖金的大臣获得奖金的数目为 9;

按照 3、2、1 这样排列队伍,获得最多奖金的大臣获得奖金的数目为 8。

当按照 3、2、1 这样排列队伍时,三位大臣左右手的数分别为:

(1, 2)、(2, 2)、(4, 1)

第 1 位大臣获得的奖金为 1 + 2 = 3;

第 2 位大臣获得的奖金为 max{3, 3} + 2 = 5;

第 3 为大臣获得的奖金为 max{5, 7} + 1 = 8。

对于全部测试数据满足:T \le 10T10,1 \le n \le 20\ 0001n20 000,1 \le a_i, b_i \le 10^91ai,bi109


参考:https://cnyali-lk.com/queen/

对于max和min的变换有了新认识

显然因为ai,bi>0a_i,b_i>0ai,bi>0 ,所以最后一个人拿到的钱一定最多。

所以只需要考虑最后一个人拿到的钱数即可。

考虑两个人的情况,第一个人左手上为a1a_1a1,右手上为b1b_1b1,第二个人左手上为a2a_2a2,右手上为b2b_2b2

如果第一个人在前面,则第二个人拿到的钱数为max(a1+b1,a1+a2)+b2=a1+b2+max(b1,a2)=a1+b1+a2+b2min(b1,a2)\max(a_1+b_1,a_1+a_2)+b_2=a_1+b_2+\max(b_1,a_2)=a_1+b_1+a_2+b_2-\min(b_1,a_2)max(a1+b1,a1+a2)+b2=a1+b2+max(b1,a2)=a1+b1+a2+b2min(b1,a2)

反之第一个人拿到的钱数则为max(a2+b2,a2+a1)+b1=a2+b1+max(b2,a1)=a1+b1+a2+b2min(b2,a1)\max(a_2+b_2,a_2+a_1)+b_1=a_2+b_1+\max(b_2,a_1)=a_1+b_1+a_2+b_2-\min(b_2,a_1)max(a2+b2,a2+a1)+b1=a2+b1+max(b2,a1)=a1+b1+a2+b2min(b2,a1)

如果第一个人在前面,则a1+b1+a2+b2min(b1,a2)<a1+b1+a2+b2min(b2,a1)a_1+b_1+a_2+b_2-\min(b_1,a_2)<a_1+b_1+a_2+b_2-\min(b_2,a_1)a1+b1+a2+b2min(b1,a2)<a1+b1+a2+b2min(b2,a1)

可以变为min(b2,a1)<min(b1,a2)\min(b_2,a_1)<\min(b_1,a_2)min(b2,a1)<min(b1,a2

)


#include<iostream>
#include<algorithm>
#include<string.h>
using namespace std;
typedef long long ll;
#define Maxn 20009
struct node
{
	ll l, r;
}a[Maxn];
int T; int n;
ll dp[Maxn];
int cmp(node a, node b)
{
	return min(a.l, b.r) < min(b.l, a.r);
}

int main()
{
	//freopen("1.txt", "r", stdin);
	cin >> T;
	while (T--)
	{
		//memset(a, 0, sizeof(a));
		cin >> n;
		for (int i = 1; i <= n; i++)
			cin >> a[i].l >> a[i].r;
		sort(a + 1, a + 1 + n, cmp);
		ll sum = dp[0] = 0;
		for (int i = 1; i <= n; i++)
		{
			sum += a[i].l;
			dp[i] = max(dp[i - 1], sum) + a[i].r;
		}
		cout << dp[n]<<endl;
	}
	return 0;
}




展开阅读全文

没有更多推荐了,返回首页