文字叙述流程
1.将自己的mapReduce程序打成jar,在提交资源时(job.submit),首先会与YarnRunner建立通信,通过代理方式向ResourceManager申请提交一个application
2.ResourceManager返回application,id资源提交路径和当前申请application 拼接成一个唯一的完整资源提交路径
3.提交job运行所需要的资源文件到hdfs上
4.资源提交完毕告知resourceManager提交完毕,并且申请运行MrAppMaster
5.ResourceManager并不会立即执行,有一个默认的机制队列FIFO调度策略,把当前提交的资源封装成一个Task放到队列中
6.NodeManager一直在处于在准备领取任务的状态,假设图中的第一个nodeManager领取到任务
7.领取到任务的NodeManager根据任务描述先在当前的空间创建一个容器(container,利用linux的cgroup机制),分配内存和cpu以及传过来MrAppMaster,首先启动MrAppMaster紧接着去hdfs上下载上传的文件到这个NodeManager本地,只有MrAppMaster知道此次任务根据job.xml以及分配的运行规划需要几个MapTask和ReduceTask,但不一定都放在本地,需要申请运行MapTask容器
8.再次申请ResourceManager封装成Task,ResourceManager分配其他机器领取任务,其他机器领取后分别创建对应的container
9.MrAppMaster发送程序启动脚本,生成的文件都存在各自的NodeManager本地,生成的文件都是经过分区且排好序列的文件
10.MapTask运行后,再次向ResourceManager申请运行ReduceTask同理申请MapTask流程,MrAppMaster会分配对应的区号给ReduceTask,MapTask任务执行后会被立即回收,但本地文件不会被回收被NodeManager管理,在搭建集群配置过Mappred_shuffle配合管理这些文件,reduceTask根据自己分配到的区号处理对应区的MapTask生成的本地文件
11.当ReduceTask全部执行完毕后,告诉ResourceManager这个程序已经全部跑完,如果在执行的期间MapTask和ReduceTask发生异常,会立即在分配一模一样的Task去执行,直到程序执行完毕