MapReduce程序运行在yarn集群流程分析(大数据学习15)

文字叙述流程

1.将自己的mapReduce程序打成jar,在提交资源时(job.submit),首先会与YarnRunner建立通信,通过代理方式向ResourceManager申请提交一个application

2.ResourceManager返回application,id资源提交路径和当前申请application 拼接成一个唯一的完整资源提交路径

3.提交job运行所需要的资源文件到hdfs

4.资源提交完毕告知resourceManager提交完毕,并且申请运行MrAppMaster

5.ResourceManager并不会立即执行,有一个默认的机制队列FIFO调度策略,把当前提交的资源封装成一个Task放到队列中

6.NodeManager一直在处于在准备领取任务的状态,假设图中的第一个nodeManager领取到任务

7.领取到任务的NodeManager根据任务描述先在当前的空间创建一个容器(container,利用linuxcgroup机制),分配内存和cpu以及传过来MrAppMaster,首先启动MrAppMaster紧接着去hdfs上下载上传的文件到这个NodeManager本地,只有MrAppMaster知道此次任务根据job.xml以及分配的运行规划需要几个MapTaskReduceTask,但不一定都放在本地,需要申请运行MapTask容器

8.再次申请ResourceManager封装成Task,ResourceManager分配其他机器领取任务,其他机器领取后分别创建对应的container

9.MrAppMaster发送程序启动脚本,生成的文件都存在各自的NodeManager本地,生成的文件都是经过分区且排好序列的文件

10.MapTask运行后,再次向ResourceManager申请运行ReduceTask同理申请MapTask流程,MrAppMaster会分配对应的区号给ReduceTask,MapTask任务执行后会被立即回收,但本地文件不会被回收被NodeManager管理,在搭建集群配置过Mappred_shuffle配合管理这些文件,reduceTask根据自己分配到的区号处理对应区的MapTask生成的本地文件

11.ReduceTask全部执行完毕后,告诉ResourceManager这个程序已经全部跑完,如果在执行的期间MapTaskReduceTask发生异常,会立即在分配一模一样的Task去执行,直到程序执行完毕
 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

3分钟秒懂大数据

你的打赏就是对我最大的鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值