京东风控算法工程师带你解读Action Model-精细化运营(上篇)

Action Model是一种解决用户行为与信用方决策相互影响问题的模型,尤其适用于信贷领域。通过预测用户在不同决策下的表现,Action Model可以计算出最优的额度、定价等,以最大化长期利润并控制风险。在实际业务中,Action Model已显示出提高用户满意度和业务指标的效果,是精细化运营的重要工具。下篇将介绍模型搭建和建模过程中的注意事项。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

ActionModel是未来的方向

金融业常被视为第一个将会被人工智能颠覆的行业,李开复更是做过一个大胆的预测:金融行业80%的人都敌不过人工智能。例如,基于大数据的信用评分已成为目前信用领域应用最广泛的工具,借力于大数据,信用评分从多方数据的角度出发,综合考虑了个人用户的信用表现、行为偏好、履约能力、身份特质、人脉关系等等多个维度的信息。然而,目前业界使用的模型大多只考虑了用户自身特征的影响,如消费行为、信贷行为、社交信息等。但其实在实际业务中,用户的最终表现不仅与其自身特征有关,还受到信用方决策的影响,而且同一决策对不同用户会带来不同的影响。

例如,不同渠道的用户对贷款利率(后文简称定价)的敏感度差异较大,信息越畅通的用户对价格越敏感,所以针对不同的用户需要制定不同的贷款利率。再例如,信贷额度(后文简称额度)对风险的影响可以对应到用户的违约成本和还款能力,即使是次级用户也不一定愿意为了几百块钱而违约。传统的策略在实际决策时虽然考虑了用户自身的属性,能够根据用户的风险和需求来做出决策,但仍然有赖于人工经验。Action Model则将决策和用户行为之间的相互影响考虑到最优化决策中,通过用户在不同的决策下分别有什么样的表现,从而给出最优的决策。作为一个行业难题,业界的实际应用还很少,但却是智能化必然需要迈出的一步。

业务价值

在信贷领域,Action Model能够计算出每个用户最优的额度与定价,进而让风险更可控,并且带来利润上质的提升。如果没有好的量化工具,无法量化决策对用户的影响,传统策略凭借经验给出的额度与定价很难做到千人千面。不合理的定价与额度会带来不好的后果,比如,保守的决策会丢失优质用户,并造成潜在的利润损失;激进的决策又会导致风险过高,损失的不仅是利润。

无法给出和用户相匹配的决策同样不利于培养良好的行业生态,应该对保持良好的使用习惯和信用的用户给出合适的正反馈。用户量越大,规模效应和算法对于人工规则的提升效应越大。从2018年来,我们的Action Model已完成多个版本迭代。目前,由Action Model给出额度和定价的用户,用户满意度和业务指标都有大幅提升。除了额度和定价,其他可调控的因素一样可以通过Action Model来计算出最佳的决策,比如循环方式和借款期限等。

图:决策空间中的最优点


Action Model

Action Model能够解决什么问题

大部分模型旨在预测事件的最终结果,比如今年你能赚多少钱?这个用户违约的可能性有多大?只要数据量足够,理论上说我们能够预测出一个平均值。然而,Action Model预测的是用户在不同的决策下分别有什么样的表现,比如说今年你投资股票和不投资股票分别能赚多少钱?你借给张三3000和借给他30万,他分别有多大可能性无法偿还。有了这些预测值,你就更好决定到底要不要投资股票、是否借钱给张三,以及借多少,从而给出最优的决策!这就是决策的最优化问题。

在信贷领域中,我们追求的是长远的可持续利益,额度和定价的给定,不仅需要考虑用户的风险成本和实际需求,而且需要培养用户良好的信贷习惯。给优质用户应得的正反馈可以降低其流失率,合理控制对次级用户额度和定价能够提高其违约成本、降低其违约收益。Action Model通过调整额度、定价等Action因素,使用户和信贷方之间的利益良性循环。具体怎样实现呢?首先,我们需要明确要预测的目标。假设我们以长期利润为优化目标,因为长期利润是由收益(无其他说明,均指不考虑风险的收益,需考虑用户的活跃率、活跃程度和流失率等因素)和风险共同决定的,所以我们需要把预测目标拆分成两个子目标:收益和风险。

图:不同用户长期利润和额度关系不同


可是等等,如果Action Model是在预测风险的同时加上预测收益,这个和风险评分(A卡分或者B卡分)加上收益评分又有什么区别呢?风险评分是基于用户特征对其逾期概率所做的预测,其评估的是用户的信用水平,p(B|x)(B代表违约用户)。而Action Model的风险子模型,预测的是用户在不同策略下的风险。因此,可以认为Action Model的风险模型是在风险评分的基础上,考虑了策略影响的风险 p(B|x,a)。收益评分也是一样。

实际上,引入Action的因素之后,可以重新表示风险评分。风险评分是直接用历史数据建模预测风险,也就是说它考虑的是用户在历史Action下的风险。如果将历史策略的分布用 p a h p_{ah} p

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值