ppt_第一章_德塔自然语言图灵系统

开始组织核心ppt文字描述,图片和源码 在书籍中已经很丰富了。
第一章_德塔自然语言图灵系统

第一章_德塔自然语言图灵系统

分词,排序,神经网络索引,搜索,动态 POS函数流水阀门细化遍历 内核匹配,POS, ANN, RNN, DNN, NLP, 图灵机,基础应用: 元基催化与肽计算 编译机的语言分析机。

测试速度:单机联想Y7000笔记本win10 实测峰值每秒 中文分词1630~1650万+中文字, 词库65000+,函数准确率100%,缺失语法函数 0.3%-, 算法准确率 99.7%+, 100%完整开放源码,在api与书籍中。

测试效果:输入:如果从容易开始于是从容不迫天下等于是非常识时务必为俊杰沿海南方向逃跑他说的确实在理结婚的和尚未结婚的提高产品质量中外科学名著内科学是临床医学的基础内科学作为临床医学的基础学科重点论述人体各个系统各种疾病的病因发病机制临床表现诊断治疗与预防

输出结果:如果+从+容易+开始+于是+从容不迫+天下+等于+是非+常识+时务+必+为+俊杰+沿海+南+方向+逃跑+他+说+的+确实+在理+结婚+的+和+尚未+结婚+的+提高+产品质量+中外+科学+名著+内科学+是+临床+医学+的+基础+内科学+作为+临床+医学+的+基础+学科+重点+论述+人体+各个+系+统+各种+疾病+的+病因+发病+机制+临床+表现+诊断+治疗+与+预防+++++
在这里插入图片描述

定义:德塔分词是一种-- 基于神经网络索引字典切割-- 进行前序遍历词性组合匹配-- 按文学语法定义搭配 的切词引擎。

德塔分词的催化切词优化方式主要包含:

1 索引字典进行细化拆分加速。细化微分能够有效的减少内存运算体积,减少资源占用。从而提高当前的关于堆栈的搜索和操作速度。

2 函数进行使用频率统计排列加速优化。函数的使用频率统计排列一旦有高频提前的操作,那么具备了队列优先意识,可进行代谢。

3 动态类卷积遍历内核的关键字优化。动态卷积内核的总数直接关联到计算复杂度,计算越复杂,成本便越高,时间开销也越大,当然自适应精度也相应提高。

4 函数文件和 函数文件名 进行新陈代谢,二次新陈代谢优化索引编码加速。函数越细化,逻辑便越简洁,那么单位的call计算便越均匀,这种balanced操作越有条理。

5 文学切词语法函数的细化优化加速。文学切词问题更有针对性。

定义者 罗瑶光
在这里插入图片描述

分词,

1 德塔的分词是一种前序《排队论》逐字遍历文字索引,通过索引中的词汇匹配 按长度进行提取,然后将提取的词汇串 进行词性切分的过程。refer page 12 ~

2 德塔的分词文字索引采用关联分类生成小文件map集(词性map,词长map,词类map), 进行整体加速,作为一个催化细化过程。refer page 44,54, 92,

3 德塔的词汇匹配目前有多个国家语言字符集,可统一,可拆分,目前最大划分处理长度为4,划分切词采用动态 类似CNN 卷积(遍历pos函数语句的内核计算,非卷积的积分叠加计算) StringBuilder核做POS识别。refer page 45,119,120,

4 德塔的词性切分按照4字词 3字词 2字词 单字 进行逐级按词汇的 POS搭配语法模式进行归纳,按文本的POS出现频率进行流水阀门方式优化。refer page 97,116,

在这里插入图片描述

(德塔分词逻辑, 已经纠正红色字 ‘卷积’改为‘内核’,因为第四修订版本已经在申请中,ppt所有书中的原图纠正内容统一更新在第5版,罗瑶光)

排序,

1 德塔分词排序思想原型采用 Sir Charles Antony Richard Hoare 的 快速排序思想。

refer page 版权原因无文字收录 已经refer 快速排序算法_百度百科

2 德塔分词排序源码原型采用 Introduction to Algorithms 的 快速排序4代源码。

refer page 版权原因无源码收录 已经refer https://github.com/yaoguangluo/Data_Processor/blob/master/DP/sortProcessor/Quick_4D_Sort.java

3 基于1 和 2原型,德塔分词排序 采用 Theory on YAOGUANG’s Array Split Peak Defect 的微分催化算子优化思想 2013年开始优化。refer page 247,248,250,529,620,

4 优化过程为 小高峰左右比对法, 波动算子过滤思想,离散条件归纳微分思想(如狄摩根计算,流水阀门计算等),目前为TopSort5D。refer page 658,下册134

5 德塔分词的函数优化方式和算法优化方式,包括分词引擎,读心术,NLP分析等核心组件均采用 微分催化系统。 refer page 661,

神经网络索引,

1 德塔分词的词汇字典用map进行索引,因为jdk8+的map对象的key支持2分搜索,搜索速度到了峰值。refer page,129,131

2 德塔分词的索引不断的将大map进行细化分类,如词长map,词类map,词性map,让搜索再次加速。refer page 55,

3 德塔分词的索引map支持 2次组合计算,支持分布式服务器进行索引cache。关于2次组合计算作者不建议单机使用。refer page 92,

4 德塔分词map的key用string的 char对应ASCII int进行标识来执行find key,方便二分搜索存储和 StringBuilder高速计算,实现底层核统一。refer page 92

神经网络索引的价值主要体现在2个地方,切词的关联索引上和 词汇map索引上。

切词的关联索引价值,主要体现在将词汇的文字进行链化提取,这种链化计算方式将词库中本相对独立的海量词汇进行了按人类语言文学中的顶针方法进行了有效的前后长度关联(NERO),其价值有利于大文本的文字进行有必要关联链的 小段小段的提取(NLP),类似挤牙膏一样,挤出来就刷牙用掉(POS)。

词汇map索引价值,主要体现在 词汇的文字进行链化合理切分,这种链化切分方式将词库中根据不同属性的分类map来组合匹配按人类语言文学中的词汇词性和主谓宾搭配严谨定义来切分。其价值在这些分类map可以自适应设计和多样化扩展。增加切词准确度和灵活度,适应各种不同的场景,类似牙刷机制,挤出牙膏根据 匹配不同的牙刷和刷牙方法(NERO + POS),匹配适应不同的口腔环境。

描述人 罗瑶光 , 稍后优化下

分词在线性文本搜索中应用,

1 德塔分词的搜索建立在map类的权重计算方法上,不同的权重叠加产生的打分进行排序输出。refer page 下册64

2 权重的计算方法按词性的主谓宾如代 名动形 ,和 POS如 动名形谓介分类。refer page 下册66

3 权重与词长,词频进行耦合bit叠加计算(bit位计算比乘法要快一个数量级),生成最终输出结果。 refer page 下册68

4 权重与词长的 比值可以精度调节,确定搜索的精确性和记录个人搜索偏好。refer page 下册68

动态 POS函数流水阀门细化遍历 内核匹配,

1 动态的核分为前序核和后序核两种。根据词汇分析的位置进行实时变动更新。refer page 97

2 前序核主要缓存存储词汇的位置和词性,用于POS词性搭配的 POS函数流水阀门细化遍历 计算。refer page 97

3 后序核主要缓存词汇的切词链 后面准备 跟进的词语。用于POS语法的修正计算,如连词匹配。refer page 97

4 内核采用StringBuilder做核载体进行计算加速。refer page 97

在这里插入图片描述

2019年3月18日之前作者Github的 该算法函数编码框架已经出现

POS函数流水阀门细化遍历前序内核关系图,图中举例 如果是非常理想来进行分词。首先通过索引字典森林长度匹配可以切分出 ‘如果’, ‘是非常’,‘理想’, 3个索引关联词句, 作者词库无‘常理’词汇,如果有,可另行讨论。‘如果’ 和 ‘理想’是比较稳定的词汇。‘是非常’属于三字词,于是开始流水阀门切分,3字词索引没有 ‘是非常’ 这个词汇,于是开始流水阀门自然语言计算处理(如果三字词有这个词汇,就流水阀门计算三字词的词性词汇搭配,如果有就return,没有同样要更进细化成2字词来做流水法门。这是该算法的强大之处)。首先拆分为‘是非-常’ 和 ‘是-非常’ 这两种词汇, 于是开始分析两种搭配词汇的POS词性,通过分析每个词汇的前后链接词汇的词性(如 ‘是非’的前链词汇是‘如果’,‘非常’的前链是‘是’,‘常’的前链是‘是非’和‘非’,‘理想’的前链包含‘常’和‘非常’)来确定切词,(这个词汇搭配是严谨固定的语法,不含概率计算事件。)如果2字词搭配出现语法错误和无索引搜索关联,则更进流水阀门至单字切词,图中计算比较幸运得到2字切词计算结果,按照流水阀门NERO-NLP-POS的水流计算,在连副副 ‘如果-是-非常’ 计算时便return了结果,没有在计算到连名副‘如果-是非-常’是因为连副副的语法计算的流水阀门高,优先计算并输出了。 描述人 罗瑶光

https://github.com/yaoguangluo/Deta_Parser/commit/25b90c9847d15df85c5c991448f2c271e0ad8106

注意:链接的CNN 关键词的 历史记录 属于作者用词错误,作者当年基础学术累积不够,关于卷积的知识仅仅学了计算机视觉的理论课,以为带内核计算的都叫CNN卷积,

另外作者发现自己还有一个错误, 就是以为序列链表方式计算就叫隐马科夫链计算。所以 CNN+隐马可夫这两个技术词汇,伴随作者10年之久。今天进行ppt严谨定义,翻阅大量定义文献资料,才发现这些错误。予以纠正。作者的ANN和RNN 出现的文本分析内核计算才是真正的CNN卷积计算。

POS,

deta parser的分词词性基于自身的词性语料库,格式为 词汇/词性, 举例如 香蕉/名词, deta的语料库录入系统函数作者的写法是用string的contains 字符串来进行map 索引登记,于是这种格式有一个巨大的好处,可以进行复合标注。如果香蕉/水果名词,浏阳/地理名词城市名词, 基于这种格式,形容词谓词特指等复杂复合词性可以很好的被计算机理解。德塔分词的词性基于每两个词汇的固定搭配,如主语后面必为谓语, 名词 + 连词+ 后面必为名词, 形容词 + 连词+ 后面必为形容词,动词+ 后面 必为宾语 +宾语补足语,这种来自人类语言文学的严谨固定搭配定义分词逐渐的取代了统计和概率论分词。 这些价值全部融入deta分词api 描述人 罗瑶光

1 德塔分词的核心类,包含了词性的搭配切分所有函数。refer page 97,116

在这里插入图片描述

NLP,

deta parser的自然语言处理 函数功能主要体现在基于词汇索引森林的长度裁剪上,中文的词汇格式比较统一,不像西方语的 元音搭配方式,如一个词汇中的元音含量的flech 弗莱士词汇难度定义,中文一般表达为 单字的文言词, 双字普通词汇,三字的俗语,4字的成语,5字以上一般为谚语和特定短语词汇,而中文的5字以上的短语词汇某种意义上又可以进行1234字拆分,举例 ‘巧媳妇难逃无米之炊’ 这9个字如果作为谚语词汇出现,其实也可以分词为 ‘巧+媳妇+难+逃+无米之炊’ 于是罗瑶光先生将长度最大值设为4. 在保障分词的精准度上,进行流水阀门的统计排列,发现2字词和单字词的随机文章中频率比较高,于是将2,1字词的处理函数靠前,逐渐 deta的 NLP流水阀门切词函数成型。 因为这种方式,deta POS的流水阀门也继承了这种高频优先计算思维。 描述人 罗瑶光

1 德塔分词的核心类,包含了词性的词长切分所有函数。refer page 119,120

在这里插入图片描述

ANN,

德塔词性的卷积计算ANN,主要包含意识比率算子,环境比率算子,动机比率算子,情绪比率算子。这个四个算子 的组合计算产生了一些高级决策,如 情感比重,动机比重,词权比重,持续度,趋势比重,预测比重,猜想比重,意识综合。这些决策在文本分析的领域可以拥有实际评估和决策的价值。同时意识综合 summing 也是德塔DNN计算的一个输入参数组件,用于文本中心思想词汇标识计算。

1词性卷积计算refer page 182

2用于确定文本的中心

2.1 算子组成

2.1.1 S SENSING 意识比率

2.1.2 E ENVIRONMENT 环境比率

2.1.3 M MOTIVATION 动机比率

2.1.4 E EMOTION 情绪比率

refer page 18

关于比率的描述:罗瑶光先生个人认为比率的价值体现在比重,举例如果100个词汇中有80个形容词,则初步判断为文章形容词比重大,文章属于比较强表达细腻的散文文笔。举例如果100个词汇中有80个动词,则初步判断为文章动词比重大,文章属于比较强刻画生动的活动状态的叙述文笔。这个比重能够很好的解释一些文章中的作者的动机和行为习惯。以及写作风格。

1 举例 如动机比率, 如果文中出现菜刀,顶板,油锅,五花肉,香料,这些词汇,这些词汇的动机map索引key 出现大量的 烹饪,value时候,那么计算机便能从这些比率中得到很多潜在的意识信息,阅读者和计算机首先便能从文章中了解到是描述烹饪过程的文章。

2 举例 如环境比率, 如果文中出现菜刀,顶板,油锅,五花肉,香料,这些词汇,这些词汇的动机map索引key出现大量的 厨房,酒店,value时候,那么计算机便能从这些比率中得到很多潜在的意识信息,阅读者和计算机首先便能从文章中了解到是描述酒店厨师的烹饪过程的文章。

3 举例 如文学性比率, 如果文中出现菜刀,顶板,油锅,五花肉,香料,这些词汇,这些词汇的大量属于名词的比重大,那么计算机便能从这些比率中得到很多潜在的信息,阅读者和计算机首先便能从文章中了解到是描述酒店厨师的烹饪过程的技术类文章。

描述人罗瑶光

RNN,

德塔的词位卷积计算RNN, 主要包含词性比率, 词距比率算子和欧基里德熵算子。这三个算子主要用于求解 POS距离, COVEX距离, EUCLID距离.这些权距 在一篇文章中能够很清楚的计算每一个词汇的使用度,出现的价值,和应用频率以及分布规律。用于文本的主要描述语句的重心所在位置计算。

1词位卷积计算refer page 178

2用于确定文本的重心

2.1 算子组成

2.1.1 P POS 词性比率

2.1.2 C CORRELATION 词距比率

2.1.3 E E-DISTANCE 欧基里德熵

refer page 18

关于距离的描述,罗瑶光先生个人认为文中的词汇不同属性和不同类别的词汇的位置距离在计算主要描述语句的重心所在位置后,可以更好的归纳文章的中心思想,我接着举例

如果文中出现菜刀,顶板,油锅,五花肉,香料,这些词汇,如果文中大量的出现五花肉的词汇,阅读者和计算机便能理解这篇文章描述的是酒店厨师的烹饪食用肉类的的技术类文章。当然,如果文中大量的出现香料的词汇,阅读者和计算机便能理解这篇文章描述的是酒店厨师的烹饪过程中关于香料的使用方法介绍的的技术类文章。

接着举例,如果相同的香料 的词汇,如 品牌陈醋,这个词汇,在全文1000字文章5段落中,品牌陈醋在文中 出现在第1段,第2段,第4段,第5段,出现了30多次,其中第4段出现了20次,这时候词距的作用可以提高 品牌陈醋的重心价值,说明酒店厨师的烹饪过程中关于香料的使用方法介绍的的技术类文章。香料的具体使用方法在第四段。

欧基里德熵的价值能更好的观测这些品牌陈醋 的词距关联的过程轨迹,进行边缘囊括,举例如果文中 句型是 品牌陈醋 + 水饺 + 品牌陈醋+ 五花肉。那么这个水饺(RNN比重虽然低)的在词距的轨迹熵中计算 DNN中心计算中比重将会提高。 五花肉因为出现在末尾,(越末尾位置比较大,这里我设计的方法出了问题,因为我在读els的作文经常 把conclusion 写在最后面,我个人认为最后的段落是用来总结的。不代表全人类思想。今天20200402又思考了这个问题,觉得依旧有合情的价值,因为在一些写作风格中,如果一开始就来个outlook进行中心论点表达,然后再分布论证,最后一个conclusion段落进行总结,虽然outlook出现的价值词汇RNN采集积分比较低,但是词距也相应变的巨大,最后的mean求解依旧占有大比重,不会轻易偏离预想结果。)

描述人 罗瑶光

DNN,

德塔的词汇深度计算 可以理解为 德塔词性的卷积计算ANN 与 德塔的词位卷积计算RNN 的前序笛卡尔卷积计算。因为参数 由 文章中心思想 和 文章的重心词位 两类组成,因此适用于分析和计算 文章的 核心思想词汇的价值

德塔DNN词汇花展示

Alkaid 罗瑶光的视频

· 129 播放

1词汇深度计算refer page 183

2用于确定文本的核心

大文本DNN 计算例子

Alkaid 罗瑶光的视频

· 12 播放

大文本中西医结合 极速中文分词进行 DNN 关联计算。

DNN 关联应用扩展

DNN 关联应用扩展 具体方式有很多,作者可以举出一些比较有价值的搭配实例, 如将红色分为 小红,浅红,中红,深红,按255色阶分出4个程度阶。 然后根据DNN的词汇计算打分进行将词汇分类用这4种颜色代替,举例 香蕉和苹果都是水果, 进行DNN计算,如果香蕉是30分,苹果是40分,水果是50分 那么进行色阶表达即可用 水果 深红, 苹果 中红,香蕉 浅红 来色阶表达,这是名词的,当然,如果有形容词用紫色标识,就 深紫,中紫,浅紫。 有 动词用黄色就 深黄,中黄,浅黄,绿色就。。。 等等等,这样德塔DNN的应用价值就灵活体现了。应为属于工业应用,作者在这里略。 定义人 罗瑶光

2.1 深度计算 (ANN sum核 -> RNN PCE)

refer page 18

在这里插入图片描述

图灵机,

1 文学分析refer page 168

在这里插入图片描述

关于图中的环境,动机联想,倾向探索,决策发觉的推荐词汇描述。

Deta文学分析的推荐词汇来自于语料词库。在分词处理文章之前,先进行语料库的词汇map导入索引预处理。于是,在输入一篇需要分析的文章之后 进行德塔分词,切出的这些词汇 通过 预处理的map索引集,依次遍历搜索进行key find 来匹配映射其结果来统计展示,举个例子 如图中文字 上瘾, 烟瘾,在map中能匹配到 化学,于是 环境 属性行便出现了 化学词汇。其它行方法类似。 作者描述下为什么 会用 环境,动机,倾向,决策,来分行,是因为,一开始,作者便想通过一种具有普遍概括的规律来进行描述这个组件功能,于是用了原始的词汇表达方法,如名词,动词,形容词,作者认为 名词具有环境描述的包含能力, 动词具有动机描述的特征表达,形容词具有具有情感的体现。这些特定的搭配能够很好的解释一篇文章的意识思维。

描述人 罗瑶光

德塔文学分析主要用于文章的思想分析和挖掘,如确定多语意识的场景,当时的环境,动机,意识形态倾向和决策思维表达等。(多语意识 :通过人物的对话方式,语言特征,模式场景等因素 来 分析当时的人文情感,大众思想,从而了解所处时代的民族风情,社会建筑,时代背景。 作者当年引用马海良的人文建筑 涉及了这个 ‘多语意识’词汇,白育芳当时要作者写明词汇的refer出处,教授人:作者导师白育芳,2007年,总参解放军炮兵学院南京分院。)

2 作品评估refer page 167

德塔作品评估 可理解为教育程度评估,如语法,词汇的词性统计,专业词汇的统计,成语,三字词的词长词汇的统计,等等。如一个句子中含有的高级词汇的比率,4字名词的比率,形容词的比率。(作者最早意识出现在2009年 在上海章鑫杰那 处理法国ESIEE亚眠大学的法语邮件项目, Pascal教授曾传授作者关于FLECH法语元音比重单词分析的表述。设计这个项目,进行了灵感发散。德塔图灵分词全文没有任何单词分析和 非中文的语言分析,不涉及flech任何思想和逻辑,因此一直没有refer。 作者拥有完整著作权和版权)

3 动机分析refer page 169

德塔动机分析 基于动机词典的map key匹配 进行决策表达。比较简单。因为词典定义 带有作者个人主观思维特征。所以没有太多描述。

适用3,4,5

在这里插入图片描述

4 情感分析refer page 159

德塔情感分析 基于 褒义词 贬义词 和中性词 的 map key匹配 进行决策表达。比较简单。因为词典定义 带有作者个人主观思维特征。所以没有太多描述。

5 习惯分析refer page 169

德塔习惯分析 基于 褒义词 贬义词 和中性词,动机词, 文学分析数据,作品评估比率,教育程度等数据 的全文比重,来确定一个人写作特征,和写作习惯。写作风格。因为词典定义 带有作者个人主观思维特征。所以没有太多描述。

6 教育程度评估refer page 168

德塔教育程度评估体现在文章中的(有效词汇如词长超过2位)的 (有价值词汇如名动形谓状)的全文,全句,其它POS词性的比率来确定文章的句法特征。举个简单的例子,一个句子中有效有价值的形容词比重大的文章通常代表作者的分析表达和散文修饰能力比较强势。,思维来自作者初中语文学习。

在这里插入图片描述

关于作文辅导能力的文字描述。

作者在已经归纳出名词,动词,形容词出现于文中的比重的数据基础上,于是展开深层次的分析计算,目的是能够迅速了解一篇文章的习惯特征和写法风格,以及作者的写作思维状态和写作水平。于是开始该组件函数包装设计。首先作者设计了简单的名词,动词,形容词,谓词,介词等在全文的比重计算,于是跟进了关于包含其 三字词的名词,形容词,和其四字词类(高级词汇, 作者定义了 二字以上形容词为高级修饰词汇,二字以上名词为高级状语,定义词汇,以此类推)的比重归纳计算,以及三字词,四字词的名,形在文中 对比 所有名,形词的比重计算。这种方法能够迅速的理解作文的写作水平,举例文中形容词占比较少,所以散文艺术比重0.1578比较低,测试数据展示偏向于议论0.47368和学习0.40983。为了让比重数据计算的更加精准,作者设计了重要指数比重,如有效词汇的定义,举例全文中介词的价值比重 在此计算组件中 是没有深刻含义的,如 ‘的’字, ‘啊’字,‘逗号’符号等这些标识。这个算法体系可以持续优化, 如 在非文言文的文章进行 增加单字词也定义为非有效词汇进行过滤,可用于分析其写作能力的精确数据评估。

描述人 罗瑶光

应用

极速中文搜索

在这里插入图片描述

关于极速中文搜索,目前整体应用于养疗经的主引擎搜索组件中,主要体现在搜索的内容和搜索的对象的计算处理方式上。关于搜索的内容,普遍采用分词和统计方法,主要包含内容的关键词,词频,词长,词性等要素处理,最后map索引封装,方便调用。而搜索对象为文本文件,文本进行极速分词,或者DNN分词,然后进行按搜索内容的格式化数据进行POS,NLP,PCA 等模块计算来匹配打分,然后包装结果排序输出。这个过程中的一些固定中间变量,可以进行按精度调节,满足不同的工业场景计算,自适应输出。 定义人 罗瑶光

20211112 gitee

我在思考一个关键点, 为什么我的德塔分词 每秒近2300万的分词速度 在 sonar的 国际认证写法格式后, 变成了1600万+说明一个问题,sonar的格式化是加强人的视觉理解格式,不是计算机的迅速理解格式。所以元基索引编码 是趋势 。

涉及著作权文件:

1.罗瑶光. 《德塔自然语言图灵系统 V10.6.1》. 中华人民共和国国家版权局,软著登字第3951366号. 2019.

2.罗瑶光. 《Java数据分析算法引擎系统 V1.0.0》. 中华人民共和国国家版权局,软著登字第4584594号. 2014.

3.罗瑶光,罗荣武. 《类人DNA与 神经元基于催化算子映射编码方式 V_1.2.2》. 中华人民共和国国家版权局,国作登字-2021-A-00097017. 2021.

4.罗瑶光,罗荣武. 《DNA元基催化与肽计算第二卷养疗经应用研究20210305》. 中华人民共和国国家版权局,国作登字-2021-L-00103660. 2021.

5.罗瑶光,罗荣武. 《DNA 元基催化与肽计算 第三修订版V039010912》. 中华人民共和国国家版权局,国作登字-2021-L-00268255. 2021.

6.罗瑶光. 《DNA元基索引ETL中文脚本编译机V0.0.2》. 中华人民共和国国家版权局,SD-2021R11L2844054. 2021. (登记号:2022SR0011067)软著登字第8965266号

7.类人数据生命的DNA计算思想 Github [引用日期2020-03-05] https://github.com/yaoguangluo/Deta_Resource

8.罗瑶光,罗荣武. 《DNA元基催化与肽计算 第四修订版 V00919》. 中华人民共和国国家版权局,SD-2022Z11L0025809. 2022. 登记号:国作登字-2022-L-10071310

罗瑶光

文件资源
1 jar: https://github.com/yaoguangluo/ChromosomeDNA/blob/main/BloomChromosome_V19001_20220108.jar
2 book 《DNA元基催化与肽计算 第四修订版 V00919》上下册
https://github.com/yaoguangluo/ChromosomeDNA/tree/main/元基催化与肽计算第四修订版本整理

3 函数在git的存储地址:demos
Github:https://github.com/yaoguangluo/ChromosomeDNA/
Coding:https://yaoguangluo.coding.net/public/YangLiaoJingHuaRuiJi/YangliaojingHuaruiji/
Bitbucket:https://bitbucket.org/luoyaoguang/yangliaojing/
Gitee:https://gitee.com/DetaChina/

4 uml: https://blog.csdn.net/weixin_38249398/category_11647527.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

罗瑶光19850525

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值