RocksDB是Flink中用于持久化状态的默认后端,它提供了高性能和可靠的状态存储。然而,当处理大型状态并频繁读写时,可能会导致背压问题,因为RocksDB需要从磁盘读取和写入数据,而这可能成为瓶颈。
遇到的问题
Flink开发中遇到读写state大对象的问题,Flink webUI 火焰图表现如下:
从图上看,瓶颈卡在序列化与反序列化,结合业务逻辑代码,业务涉及state大对象的读写,并且是ValueState。
问题分析
如上,作为初学者来说,如果要在键值状态中存储Map<K, V>数据结构的状态,可能会认为使用ValueState<HashMap<K, V>>或者使用MapState<K, V>都是可行的。
如果我们选择使用HashMap状态后端,那么两种方式的性能上不会有很大差异,但是如果我们选择使用RocksDB状态后端,则推荐使用MapState<K, V>,避免使用ValueState<HashMap<K, V>>。
- 因为ValueState<HashMap<K, V>>在将数据写入RocksDB时,是将一整个HashMap<K, V>序列化为字节数组之后写入的。
- 同样,在读取时,也是先读取到字节数组,然后反序列化为一整个HashMap<K, V>后,再给用户使用。
所以每次访问和更新ValueState时,实际上都是对HashMap<K, V>这个集合类的大对象做序列化以及反序列化(如上图所示),而这是一个及其耗费资源的过程,很容易就会导致Flink作业产生性能瓶颈,所以极不推荐在ValueState中存储大对象。

最低0.47元/天 解锁文章
6882

被折叠的 条评论
为什么被折叠?



