SanyiRouROU的博客

肯勤奋学习的技术小白! 哈哈哈,我不会就这样了吧!

数据集的导入及缺失值处理

怎么选择数据集? 推荐阅读:机器学习可使用的数据集介绍 UCI iris数据集 本次实验所用的鸢尾花 iris数据集是来自于UCI Machine Learning Repository,比较简单,总共150行5列,前四列为特征向量,第五列为标签(0:Iris-setosa,1:Iris-...

2019-04-12 14:23:54

阅读数 117

评论数 0

机器学习可使用的数据集介绍

我们在学习机器学习算法时候经常需要使用到一些现成的数据集来进行实验,便于我们更好地理解算法效果。 数据集(Dataset)是一种由数据所组成的集合,每一列代表一个特定变量,每一行对应于该问题的某一成员,通常以表格形式(***.csv)出现。 在选择数据集时要记住几个重要标准: 数据集不...

2019-04-12 11:11:58

阅读数 129

评论数 0

“Keras 四步法”快速搭建神经网络模型

Keras 为支持快速实验而生,能够将我们的一些想法和方案迅速转换为结果,是一个高层神经网络 API,由纯 Python 编写而成,以TensorFlow和Theano 为后端。 Keras 有以下一些特点: 简易和快速的模型设计; 极简,对用户友好; 支持CNN和RNN,或二者的结...

2019-03-25 22:35:49

阅读数 132

评论数 0

Anaconda下的Jupyter NoteBook安装及使用

Jupyter Notebook 是一个交互式笔记本(本质是一个 Web 应用程序),便于创建和共享文学化程序文档,支持实时代码,数学方程,可视化和 Markdown,可支持运行 40 多种编程语言。 用途包括: 数据清理和转换; 数值模拟; 数据可视化; 统计建模; 机器学习; ...

2019-03-25 16:11:17

阅读数 155

评论数 0

sklearn学习笔记 半监督分类 之 标签传播对手写数字分类

手写数字数据集总共有1797个点,但只有30个将被标记。 混淆矩阵形式的结果和每个类的一系列指标将非常好。 标签传播模型将使用所有点进行训练,通过极少数标签对手写数字进行分类。 本次实验主要是简单展示下“半监督学习”的强大功能: import numpy as np import matp...

2019-04-14 21:36:45

阅读数 52

评论数 0

sklearn学习笔记 半监督分类 之 标签传播与SVM的决策边界

“模式识别”研究的问题是如何将不同的事物划分为不同的类别,基于现有的研究,分类识别方法可分为三类:监督识别、非监督识别、半监督识别。 1、监督识别需要事先给样本数据集做标签来训练分类器,前期标签数据费时费力; 2、非监督识别可根据没有做好标签的样本数据自动生成分类器; 3、半监督识别介于监督...

2019-04-14 20:41:10

阅读数 93

评论数 0

sklearn学习笔记SVM 之 自定义Kernel

推荐阅读: 功能强大的Python包sklearn概述 机器学习可使用的数据集介绍 数据集的导入及缺失值处理 本次实验主要是自定义一个内核 Kernel 函数,然后使用sklearn.datasets 自带的鸢尾花Iris 数据集样本进行SVM 分类。 import numpy ...

2019-04-14 17:19:29

阅读数 54

评论数 0

sklearn学习笔记SVM 之 分离超平面的最大边距

推荐阅读: 机器学习可使用的数据集介绍 数据集的导入及缺失值处理 功能强大的Python包sklearn概述 使用具有线性内核的支持向量机分类器绘制在两类可分离数据集中分离超平面的最大边距: import numpy as np import matplotlib.pyplot ...

2019-04-14 16:02:54

阅读数 60

评论数 0

sklearn学习笔记SVM 之 非线性SVM

推荐阅读: 机器学习可使用的数据集介绍 数据集的导入及缺失值处理 功能强大的Python包sklearn概述 使用具有 RBF 内核的非线性 SVC 进行分类, 要预测的目标为数据集的标签 target。本次实验所用的数据选用 sklearn.datasets 自带的鸢尾花Iris ...

2019-04-14 11:22:58

阅读数 51

评论数 0

Jupyter Notebook使用小技巧

推荐阅读: Anaconda软件概述 Anaconda下的Jupyter NoteBook安装及使用 在主界面里可新建:Text File文本文件、Folder文件夹、Terminal终端及Python 3文件 新建文件 点击主菜单栏中“ Running ”,可以看到目前正在...

2019-04-13 12:18:08

阅读数 39

评论数 0

sklearn学习笔记SVM 之 鸢尾花二特征分类

推荐阅读: 功能强大的Python包sklearn概述 机器学习可使用的数据集介绍 数据集的导入及缺失值处理 用 sklearn.datasets 自带的Iris 数据集做个简单的小实验,鸢尾花 SVM 二特征分类: import numpy as np import pandas ...

2019-04-13 10:42:47

阅读数 229

评论数 0

好用的文本编辑器推荐

Sublime Text 是什么? Sublime Text 是一个跨平台且具有漂亮用户界面和强大功能的文本编辑器,支持Windows、MacOS、Linux等操作系统。 主要功能包括:拼写检查,书签,完整的 Python API , Goto 功能,即时项目切换,多选择,多窗口等等。 ...

2019-04-12 21:13:22

阅读数 460

评论数 0

功能强大的Python包sklearn概述

在机器学习和数据挖掘的应用中,scikit-learn 是一个功能强大的 Python 包,内置了很多机器学习模块,也提供一些实验数据集。 特点: 简单有效的数据挖掘和数据分析工具 可供所有人访问,并可在各种环境中重复使用 基于 NumPy、SciPy 和 matplotlib 构建 ...

2019-04-12 10:15:55

阅读数 56

评论数 0

HTTP和HTTPS协议概述

什么是HTTP协议? HTTP是HyperTextTransferProtocol的缩写,中文翻译为超文本传输协议,它是一种用于分布式、协作式和超媒体信息系统的应用层协议,HTTP是万维网的数据通信的基础。 说的简单点,其实HTTP协议主要就是用来进行客户端和服务器之间进行通信的标准协议,规定...

2019-03-25 14:42:04

阅读数 57

评论数 0

Anaconda软件概述

Anaconda 是一个开源的包、环境管理器,其包含了conda、Python等180多个科学包及其依赖项,可以用于在同一个机器上安装不同版本的软件包及其依赖,并能够在不同的环境之间切换。 可以将 Anaconda 看作是软件包管理工具,拥有安装、卸载、更新、查看、搜索等很多实用的功能,简单的鼠...

2019-03-24 14:46:26

阅读数 151

评论数 0

AI算法专业名词

机器学习算法 Machine Learning Algorithms 有监督学习: 回归Regression: 广义线性回归 Generalized Linear Regression 高斯处理 Gaussian Process 保序回归 Isotonic Regression 分...

2019-03-24 14:37:46

阅读数 52

评论数 0

用一句话总结常用的机器学习算法

1、贝叶斯分类器 Bayes Classifier 核心:将样本判定为后验概率最大的类。 2、决策树 Decision Trees 核心:一组嵌套的判定规则。 3、kNN 算法 核心:模板匹配,将样本分到离它最相似的样本所属的类。 4、主成分分析 PCA 核心:向重构误差最小(方差最大)的方...

2019-03-24 14:23:33

阅读数 38

评论数 0

图片文件制作攻略

1、文件扫描 工具:手机应用“扫描全能王” 下载:通过官网https://www.camscanner.com或一般手机应用商店均可以下载 应用优势: (1)自动寻找文档边框,自动切除多余背景,自动进行角度校正,可以进行微调 (2)技术处理扫描文档,使文档清晰可读(该应用具备增强算法,可...

2019-03-24 12:15:50

阅读数 36

评论数 0

macOS常用终端命令大全

本人用的是macOS,我在学习ML、DL时需要在“终端”使用一些Linux常用命令,所以在网上找了跟此有关的资料,方便自己以后使用。 初识终端 格式:“电脑用户名:当前路径 账户名$ 一条命令 ” 命令的构成:Command Name、Options、Arguments、Extras 四...

2019-03-23 16:23:38

阅读数 43

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭