Pandas
hantailala
wu爱好
展开
-
往Series添加DataFrame
往Series添加DataFrame要注意的是Series的索引和DataFrame的列名是否匹配,当匹配时s = pd.Series([1, 2])df = pd.DataFrame({ 0: [10,10], 1: [10,10] })print s print dfprint df + s0 11 2dtyp...原创 2018-08-09 05:28:09 · 3514 阅读 · 0 评论 -
DataFrame--groupby()
groupby用来将df按列名进行分组data = np.array([1,2,3,4,5])df = pd.DataFrame({ 'L1': data, 'L2': data==2, 'L3':data/2}, index=['a', 'b', 'c', 'd', 'e'])print df L1 L2 L3a 1 False ...原创 2018-08-09 06:21:08 · 834 阅读 · 0 评论 -
Pandas--Series
1.Pandas Series与numpy array不同点:Series是一个类数组的数据结构,同时带有标签(lable)或者说索引(index)。 Series可使用s.describe()。相同点:通过索引获取元素。 遍历 for x in a: 可使用函数:mean(),max()。 2.pandas series运算import pandas as pd...原创 2018-08-05 16:07:47 · 230 阅读 · 0 评论 -
Pandas--loc与iloc
Series.loc:通过标签或布尔数组访问一组行和列。loc[]主要是基于标签的,但也可以与布尔数组一起使用。import pandas as pddf = pd.DataFrame([[1, 2], [3, 4], [5, 6]],index=['cobra', 'viper', 'sidewinder'],columns=['max_speed', 'shield'])pr...翻译 2018-08-05 16:33:40 · 1088 阅读 · 0 评论 -
Pandas--DataFrame
创建DataFrameimport pandas as pdimport numpy as npa = np.arange(50).reshape(10,5)# print atest_df = pd.DataFrame( data=a, index=['index0', 'index1', 'index2', 'index3', 'index4', ...原创 2018-08-06 20:35:57 · 194 阅读 · 0 评论 -
Pandas--DataFrame运算
相同列名相加df1 = pd.DataFrame({'a': [1, 2, 3,4], 'b': [ 5,6,7,8], 'c': [9,10,11,12]})df2 = pd.DataFrame({'a': [10, 20, 30,40], 'b': [50, 60,70,80], 'c': [90,100, 110,120]})df3 = pd.DataFrame({'d': [10...原创 2018-08-08 21:57:15 · 3324 阅读 · 0 评论 -
DataFrame--applymap()和apply()
调用DataFrame的applymap()函数,df每个元素运算后会得到一个新的元素,从而得到一个新的df。df = pd.DataFrame({ 'a': [2, 2, 2], 'b': [2, 2, 2], 'c': [2, 2, 2]}) def multiply(x): return x * 2 ...原创 2018-08-08 22:32:18 · 552 阅读 · 0 评论